
Proceedings of the Third Biennial Conference of the Canadian Society for Computational Studies of Intelligence,
Saskatoon, 14-16 May 1980, pp. 232-239.

APPLICATIONS OF THE CONTRACT NET FRAMEWORK: SEARCH

Reid G. Smith

Defence Research Establishment Atlantic
Box 1012

Dartmouth, Nova Scotia, B2Y 327, Canada.

Abstract1

We discuss the implementation of heuristic search
algorithms in a distributed problem solver whose
processors interact according to the contract net protocol.
Task distribution is viewed as a local mutual selection
process based on a two-way transfer of information
between processors with tasks to be executed and
processors with knowledge-sources capable of executing
those tasks.

As an example of the approach, we consider the N
Queens problem. We then derive measures of the speedup
that can be expected from the application of a distributed
processor to search problems that involve regular trees, and
discuss the effect of coupling between processors on
speedup. Bounds are developed for the number of
processors that are required to achieve maximum speedup.

1 Introduction

Distributed problem solving is the cooperative solution
of problems by a decentralized and loosely coupled
collection of knowledge-sources (KSs), each of which
may reside in a distinct processor node. The KSs
cooperate by sharing tasks and/or results. By decentralized
we mean that both control and data are logically and often
geographically distributed; there is neither global control
nor global data storage. Loosely coupled means that
individual KSs spend most of their time in computation
rather than communication. Such problem solvers offer
the promise of speed, reliability, extensibility, the ability
to handle applications with a natural spatial distribution,
and the ability to tolerate uncertain data and knowledge.

Search problems are attractive as applications of
distributed problem solving for three major
reasons. First, exploration of a search space of
the size commonly encountered in AI applications
consumes a large amount of computing time (see, for
example, discussions of Meta-Dendral [Buchanan,
1978], and CONGEN [Carhart, 1976]). Thus, the

1 This work was supported in part by the Advanced

Research Projects Agency under contract MDA 903-77-C-
0322, and the National Science Foundation under contract
MCS 77-02712. Some of the work described is being
pursued in collaboration with Randall Davis at MIT. Joe
Maksym also made a number of valuable comments.

speedup promised by the distributed approach is
attractive. Second, search problems are often modular in
form. Numerous relatively independent subtasks are
created during the course of a search. These subtasks are
ideal candidates for distribution to individual processors.
Finally, search is one of the major problem-solving
paradigms. It is therefore important to develop tools for
applying the new VLSI technology to search problems.

2 Task-Sharing And Contract Negotiation

The contract net protocol [Smith, 1978], [Smith,
1979] facilitates cooperation of multiple processors in the
solution of a problem. Dynamic matching of tasks and
KSs is effected by negotiation. A contract is an explicit
agreement between a processor that generates a task (the
manager) and a processor willing to execute the task (the
contractor). (Note that a processor is assumed to contain
one or more KSs.) A contract is normally established by a
process of local mutual selection based on a two-way
transfer of information. In brief, available contractors
evaluate task announcements made by several managers
until they find one of interest. They submit a bid for that
task. The manager then evaluates the bids received from
potential contractors and selects the one it determines to
be most appropriate. Both parties to the agreement have
evaluated the information supplied by the other and a
mutual selection has been made. Control is distributed
because processing and communication are not focussed
at particular processors, but rather every processor is
capable of accepting and assigning tasks.

Contract net messages contain slots for information
that aids negotiation. A task announcement contains three
such slots. The eligibility specification is a list of criteria
that a processor must meet to be eligible to submit a bid.
It enables a processor receiving the message to decide
whether or not it is able to execute the task. This
specification reduces message traffic by pruning
processors whose bids would be clearly unacceptable. The
task abstraction is a brief description of the task to be
executed. It enables a processor to rank the announced
task relative to other announced tasks. An abstraction is
used rather than a complete description in order to reduce
the length of the message. The bid specification is a
description of the expected form of a bid. It enables a
processor to include in a bid only the information about its

232

http://www.rgsmithassociates.com/About.htm

capabilities that is relevant to the task rather than a
complete description (called a node abstraction). This
simplifies the task of the manager in evaluating bids and
further reduces message traffic.

3 Distributed Search: Overview

In this section we discuss some general
characteristics of distributed search. We then show how
the contract net protocol can be used to organize a
distributed problem solver to perform such a search.

Consider the exhaustive search of a tree in a
distributed processor. To make clear the flow of the
search, we make the following assumptions: (i) the basic
task for each processor is generation of a successor node
in the tree, (ii) as soon as a processor generates a node, it
distributes that node to another processor for further
expansion, (iii) generation of each node requires a
constant processing time, (iv) there is a sufficient number
of processors so that the expansion of a node can be
commenced by one processor as soon as the node has
been generated by another, (v) a processor can distribute a
successor node to another processor concurrently with
generation of another successor node, and (vi) distribution
of a node to a processor and reporting of results require a
negligible amount of time compared to the time required
to expand the node.

The flow of the search process is shown in Figure 1
for a regular tree of branching factor 2 and depth 3. The
numbers inside each node circle indicate the time unit at
which the node was generated and the processor that
generated it (in the format “time / processor”).

Figure 1. Distributed Search Of A Regular Tree.

At time 1, one successor of the root node is
generated. This successor is distributed (we assume
instantaneously) to another processor, so that at time 2,
two successors are generated. The number of processors
involved in the search rises from 1 to 4 and then decreases
again to 1 before completion.

It is apparent that problems that entail a large amount
of search are especially amenable to a distributed
approach – they have the potential for large speedups. In
addition, trees comprised of OR nodes lend themselves

more readily to concurrent exploration than do those
comprised of AND nodes. This is because less processor
synchronization is required for their exploration. Trees
with Ordered-AND nodes (i.e., nodes that must be
expanded in a particular order) are the least amenable to
concurrent exploration because they require the greatest
amount of synchronization (which inevitably means that
some processors will stand idle waiting for results to be
generated by other processors).

In Appendix A we present performance measures for
exhaustive distributed search of regular trees. It is shown
that speedups that are close to linear in the number of
processors are possible. It has been shown elsewhere (e.g.,
[Imai, 1979]) that better than linear speedups are possible.
This result follows for problems in which application of
multiple processors can eliminate fruitless expansion of a
large number of nodes. We also see from the analysis that
trees that are bushy near the root lead to larger speedups
than trees in which bushiness occurs at larger depths. This
is due to the fact that more processors get involved
quickly, and the nodes they generate can often be queued
for later expansion with no increase in search time
(because of the decreased demand for processors as the
search nears completion). Finally, it is shown that loose-
coupling must be maintained if maximum speedups are to
be achieved.

3.1 Node Selection

In a distributed search, selection of nodes for
expansion and generation of their successors are
asynchronous, local processes. Node selection is
especially different from the uniprocessor case, where a
global evaluation function is used to select one node to be
expanded next. Distributed search strategies have a local
character because many nodes may be selected
concurrently for expansion by individual processors,
usually based on a more local evaluation.

If interprocessor communication is severely
constrained, then as a processor generates new nodes, it
queues them locally for expansion and processes them
alone as soon as it can (in an order dependent on its search
strategy). Only when a processor is idle and has no nodes
queued for expansion does it communicate with other
processors to acquire new nodes. We call this local
queuing. The result is a local approximation to one of the
familiar uniprocessor search strategies.

It is possible to impose a global search strategy on a
distributed processor by transmitting all nodes ready for
expansion to a central repository. A global evaluation
function can then order the nodes, and idle processors can
remove them (in order) from the repository. We call this
global queuing. Unfortunately, it can lead to bottleneck
and reliability problems. In addition, when
communication costs are high, it can lead to lower
speedups than local queuing (see Appendix A). The main
advantage of global queuing is that it offers the potential

233

for ensuring that the best nodes are expanded first because
the evaluation function has a global perspective. When
local queuing is used, other measures must be taken to
approximate a global perspective. This is an example of
the general problem of achieving coherent behavior in a
system that uses distributed control. Distributed control is
necessary if the advantages of distributed problem solving
are to be achieved – but it leads directly to a problem in
maintaining global coherence.

Better approximations to global strategies are
obtained at the price of interprocessor communication.
The intent of a best-first search in a uniprocessor, for
example, is to select the most appropriate node for
expansion at any given time. If interprocessor
communication is severely constrained, then an individual
processor can only select the best of the nodes that it has
stored locally; and none of these nodes may be the overall
best node to be expanded. If the processors can
communicate mere extensively with each other, then
several of the overall best nodes can be concurrently
selected for expansion by separate idle processors. We
will see how this is done with the contract net protocol in
the next section.

4 Example: The N Queens Problem

The goal of the N Queens problem is to place N
queens on an N x N chessboard in such a way that no two
are on the same row, column, or diagonal. We discuss one
possible implementation of this problem as a simple
introductory example of the issues that arise in an
application of distributed problem solving. Section 4.1
shows sample messages transmitted by processors during
the solution of the problem.

The processor at which the problem is started (the
top-level processor) begins with an empty board. It
generates N subtasks, each of which corresponds to a
partial board with 1 queen in the first column and in a
different row for each subtask. These subtasks are
announced. Bids are submitted by other idle processors.
Successful bidders are awarded contracts for the task of
extending the partial boards to completion. The top-level
processor is the manager for this task. (It is now free to
become a contractor for future subtasks.)

This process is continued recursively for each column
of the board; that is, the contractors trying to extend
partial boards (here, with 1 queen already placed)
generate independent subtasks by placing a queen in the
next column (here, the second column) under the no-
capture constraint. They then distribute the subtasks (and
take on the role of manager for them).

There is thus only one type of task for all
processors—extension of a partial board. When a
processor node places the Nth queen, and thus has a
complete solution to the problem, it reports to its

manager. (Similarly, when a processor cannot further
extend a partial board, it reports to its manager.) Further
reports ripple upward to the top level and the search
terminates when some pre-specified number of solutions
has been compiled; that is, when any manager has
received the required number of solutions, it terminates
any outstanding subtasks within its span of control and
reports to its own manager. This manager in turn
terminates outstanding subtasks, and so on. Ultimately,
the top-level node reports the solutions to the user.

The task abstraction of each task announcement
specifies the type of task to be executed and the present
state of the task, relative to the goal state (in this case, the
number of queens that have already been placed on the
partial board). The number of queens placed gives a
potential contractor a method for ranking announced tasks
in order to select a task for submission of a bid. It is used
by processors in this example to effect an approximation
to the desired global search strategy. A breadth-first
strategy, for example, is implemented by ranking boards
that have a small number of queens placed higher than
those that have a larger number of queens placed. Bids are
submitted first for these boards, and they are therefore
generally executed before the others.2

We pointed out earlier that one of the problems
associated with distributed control is approximation of the
global perspective that enables a uniprocessor to select the
best nodes for expansion at any time. This problem is
handled in a contract net as follows: Each processor
listens to all task announcements and maintains a list of
recent announcements. When a processor goes idle, it
selects, according to its own criteria, the current optimum
task for which to submit a bid from among the tasks
contained in its list. Each processor therefore has a kind of
window through which to view the currently available
tasks. This window lends a more global character to the
search strategy because node selection is based on
information received from a number of processors. The
cost is local storage (for the list of tasks) and
communication (to gain information about tasks available
from other processors).

Two possible eligibility specifications are shown. The
first is a null specification. The assumption here is that all
processors have the necessary procedures for executing
the extend-board task. A bid then simply indicates that a
processor is willing to execute the announced task, and
the contract is awarded to the first bidder. In the second
case, the eligibility specification names the required
procedures. The assumption here is that not all processors
are pre-loaded with the necessary procedures. A potential
contractor can submit a bid indicating that it needs the
procedures to execute the task. In this case the contract is
awarded to the first processor that has the procedures, or,
in the absence of any such bidders, to the first bidder. This

2 It is of course possible to execute different search

strategies at different processors.

234

is an example of dynamic transfer of knowledge. (See
[Smith, 1978] for a more extensive discussion.) A simple
award strategy (i.e., award to the first bidder) is possible
for this problem because any processor with the
procedures has the capability to execute the task.

4.1 Sample Messages

<The processor given responsibility for the top-level task
issues messages of the following form as it generates the
first subtasks.>

To: * <“*” indicates a broadcast message.>
From: 1
Type: TASK ANNOUNCEMENT
Contract: 1

Task Abstraction:
 TASK TYPE EXTEND-BOARD
 BOARD QUEENS 1

Eligibility Specification:
 NIL <or> PROCEDURE NAME EXTEND-BOARD

Bid Specification:
 NIL

To: 1 <Idle processors respond.>
From: i
Type: BID
Contract: 1

Node Abstraction:
 NIL <or> REQUIRE PROCEDURE NAME EXTEND-BOARD

To: i <To the successful bidder.>
From: 1
Type: AWARD
Contract: 1

Task Specification:
 BOARD SPECIFICATION (...)
 PROCEDURE NAME EXTEND-BOARD CODE (...)
 <If required.>

To: k <Eventually, messages like
From: q this are transmitted.>
Type: REPORT
Contract: j

Result Description:
 SUCCESS
 BOARD SPECIFICATION (...)
<or>
 FAILURE

To: n <When enough solutions have been
From: m accumulated by a manager, it
Type: TERMINATION sends messages like this
Contract: i to its contractors.>

5 Summary

We have shown the use of the contract net protocol in
the solution of a search problem. The negotiation process
is particularly simple for this problem and a minimal
amount of information needs to be transferred between
processors. Consequently, only a degree of the power of
the approach is demonstrated. The main use of the
protocol in this example is to make connections between
processors for reliable distribution of the processing load
and communication of results. Processors are efficiently
used because they can take on multiple roles: A processor
that has generated all 1-queen extensions to the current
board and distributed them to other processors
(contractors) need only deal with reports occasionally (in
its role as manager). It is therefore free to act as a
contractor for other tasks. The result is that no processors
remain idle as long as there are tasks to be executed.
Furthermore, processors are able to obtain the procedures
necessary to execute tasks as part of the negotiation
process. Finally, the explicit manager-contractor links
assist in rapid local pruning of the search space (via
termination messages) when a sufficient number of
solutions has been found. Each manager can directly
terminate the execution of subtasks being executed by its
contractors as soon as it becomes aware that the results
are no longer required. The net does not have to wait for
reports to reach the top-level processor before subtasks
are terminated.

We have demonstrated the utility of negotiation as an
approach to the problem of maintaining global coherence
in a system that uses distributed control. The problem is
by no means solved, however, and is a focal point for
further research. One of the extensions currently under
examination is to have processors listen more carefully to
the message traffic around them. At present, only task
announcements are examined by all processors. It may
prove beneficial for other messages (e.g., bids, awards,
and reports) to be subjected to the same scrutiny. It may,
for example, lead to more informed bid and award
strategies.

Appendix A

Distributed Search Analysis

We derive bounds on the performance that can be
expected from distributed search of regular trees.
Although we only explicitly consider regular trees in this
analysis, the results are easily extended to a more general
class of trees – those that are compositions of regular
trees. (See [Smith, 1978] for details.)

235

A.1 Speedup
The total number of nodes, n, in a regular tree

structure with depth d and branching factor b is,
1 (- 1) /(- 1).dn b b+= (1)

The number of tip nodes, , in such a tree is tn
.d

tn b= (2)
The time required for the search is the most

appropriate measure of performance for a distributed
processor. The traditional uniprocessor measure of
number of nodes examined is still a valid measure of the
power of the search strategy, but is insufficient to capture
the effect of multiple processors.

A.1.1 Uniprocessor Search
The search time divides into two components: the

time to expand a node, , (i.e., the time required to
generate all successor nodes of a node), and the time to
select a new node for expansion,

et

st . The time to expand a
node can be rewritten in terms of the time required to
generate a single successor node, gt , as follows,

 .et b t= ⋅ g

t⋅

t⋅

 (3)
The minimum time to find one goal node in a regular

tree is achieved if the tree is searched in a depth-first
fashion and no false paths are explored. Under this
assumption, the uniprocessor search time, , is, u

mint
 ((- 1) 1) (- 1) .u

min g st d b t d= ⋅ + ⋅ + (4)
We have assumed that a node is completely expanded

(i.e., all successor nodes are generated) before a new node
is selected for expansion, and that the goal node can be
recognized as soon as it is generated. We do not consider
search strategies where only some of the successors of a
node are generated before a new node is selected for
expansion. (See [Smith, 1978] for treatment of this type
of strategy.)

The maximum uniprocessor time, , is achieved
when exhaustive search of the tree must be performed
before the goal node is found. In this case, the search time
is,

u
maxt

 (- 1) (- 1 -) .u
max g t st n t n n= ⋅ + (5)

A.1.2 Distributed Processor Search
We assume the search strategy is as presented in

Section 3; that is, a node is distributed for expansion by
another processor as soon as it is generated; there is thus
no time required for selection of nodes and the search
time depends on the time to generate a successor node,

gt , and the time to distribute a node to another processor,

. We assume that the cost must be incurred any time
the expansion of a node is started by a processor, even if

the node was generated by that processor. This is the case
if global queuing is used. It leads to a somewhat
pessimistic estimate for search time (and therefore
speedup) but simplifies the analysis. We will later drop
this assumption.

ct ct

The minimum time for a distributed processor to find
a single node in a regular tree, , is, d

mint
= (- 1) .d

min g ct d t d t⋅ + ⋅

t

 (6)

The maximum time, , is given by, d
maxt

 (- 1) .d
max g ct d b t d= ⋅ ⋅ + ⋅ (7)

This is equivalent to the time required to expand the
nodes that border the tree on one side.

A.1.3 Comparison

The speedup for exhaustive, or maximum, search,
, is given by, maxeS

/u d
maxe max maxS t t= (8)

Note that is not the maximum attainable
speedup for a regular tree. It is, however, a convenient
measure for comparison. We will later derive the address
of the tip node for which the maximum speedup is
attained.

maxeS

Note also that as the selectivity of the search strategy
is augmented, thus diminishing the need for exhaustive
search, the advantage of concurrent computation is also
diminished.

In order to draw some simple conclusions from the
equation, we will assume that maxeS s gt t . Under this

assumption,

max (- 1) /((- 1) (/)).e cS n d b d t tg≈ ⋅ + ⋅ (9)
/c gt t is a measure of the coupling between processor

nodes for the distributed search problem. We call this
ratio the processor-coupling-factor, . (Note that it
depends on both the characteristics of the task and the
characteristics of the distributed processor.) Thus,
rewriting (9), we have,

pC

max (- 1) /((- 1)).e pS n d b d C≈ ⋅ + ⋅ (10)
Figure A.1 shows the variation in as a function

of for a regular tree of branching factor 3 and depth
6. The cost of a mismatch between the task grain size and
the communications characteristics of the distributed
processor is apparent: Loose-coupling must be ensured by
a proper match of task grain size to distributed processor
communications characteristics if a significant speedup is
to be achieved.

maxeS

pC

Figure A.2 shows the maximum speedups attainable
for exhaustive search of three regular trees, of branching
factor 2, 3, and 6, as a function of depth, under the

236

assumption that . Also shown is , obtained by
comparing the minimum time for a distributed processor
to search a regular tree, , with the minimum time

required for a uniprocessor, , assuming that all
successors of a node must be generated before a new node
can be selected for expansion.

0pC = minS

d
mint

u
mint

Figure A.1. Speedup And Coupling

Figure A.2. Speedup For Three Regular Trees

A.2 Processor Requirement

We derive lower and upper bounds on the number of
processors, , required in a distributed processor to
obtain the maximum speedup for the exhaustive search of
a regular tree. We assume that , and that

maxP

0ct = 1gt = .

As a lower bound, it is apparent that at least
processors are required to achieve a speedup of .
This is overly optimistic because it assumes that all
processors are fully utilized throughout the period of the
computation. Near the start and end of the search,
however, very few processors are in use.

maxeS

maxeS

In order to improve the estimate, consider the rate at
which processors are pressed into service as the search
progresses. The number of new tasks generated at each
successive time unit in the search of a tree of infinite
depth and branching factor b is given by the following
generalized Fibonacci series of order b,

* * * *
-1 -2 - (...).j j j jP P P P= + + + b

⋅

 (11)

 1,2,3, ...j =
* 0, -1.jP j= <
* *
-1 0, 1.P P =

where the “*” superscript is used to indicate that the
series is written for a tree of infinite depth. To account for
the finite depth of the trees of interest, the equation can be
modified as follows. Observe that whenever a processor
reaches a tip node in the tree, the effect is to prune a
subtree from the infinite tree. This pruning begins after d
time units. We can account for the pruning of these
subtrees by subtracting Fibonacci series, that start at times
when processors reach tip nodes, from the original series.
The number of series to be subtracted at each time instant
corresponds to the number of tip nodes reached at that
time instant. The number of tip nodes reached at each
instant of time (starting at the time instant, when the
first tip node is reached, to the b d time instant, when
the search is completed) is given by,

thd
th

 (, -).j bk C d j d= (12)

 , 1, 2, ..., .j d d d b d= + + ⋅
 0, , .jk j d j b= < > ⋅d

where is the coefficient in the row

and the column of the m-arithmetic triangle. In
general, the obey the equation,

(,)mC n k thn
thk

(,)mC n k

237

(,) (-1,) (-1, -1) m m mC n k C n k C n k= + +

0.

 (13)

... + (-1, - 1).mC n k m +

0 (-1), k n m n≤ ≤ ⋅ ≥

(0, 0) 1mC =

(1,) 1, 0 -1.mC k k m= ≤ ≤

(1,) 0, .mC k k m= ≥

Thus the number of processors required, jP , is given
by,

* * * *
- 1 -(1 - - -j j d j d d j dP P k P k P+ += ⋅ ⋅) (14)

*
-()... - .b d j b dk P⋅ +⋅

 0,1,2, ..., .j b d= ⋅

And an upper bound on the number of processors
required is given by,

 ().max jP MAX P= (15)

0 .j b d≤ ≤ ⋅

This estimate is an upper bound because of the
assumption that nodes cannot be queued for later
expansion, but instead must be expanded as soon as they
are generated. This is not generally required because of
the lower demand for processors as the search nears
completion.

Figure A.3. Processor Requirement

Figure A.3 shows the two bounds for the required
number of processors for exhaustive search of the same
three trees as used in Figure A.2. Also shown (by dashed
lines) is the actual number of processors required to
achieve the maximum exhaustive search speedups (as
determined by simulation).

Figure A.4 shows the increase in normalized speedup
for a tree of branching factor 3 and depth 6 as the number
of processors is varied. Also shown is the corresponding
decrease in efficiency (i.e., speedup per processor). This is
a conservative estimate of efficiency, in that it includes
processors that stand idle near the start and end of the
search. These processors might be applied to another top-
level problem during this time in a general-purpose
distributed processor.

We noted earlier that the speedup estimates for
distributed processor search are slightly pessimistic,
because of the assumption that the cost is always
incurred when a processor acquires a node for expansion.
In Figure A.5, we show the effects of dropping this
assumption. The figure compares the possible speedups
for varying numbers of processors on a tree of depth 6 and
branching factor 3 for both the global queuing of nodes to
be expanded and the local queuing of such nodes. The
speedups are normalized to that attainable with a global
queuing strategy. A small number of sample points are
marked with symbols to allow the reader to distinguish
between the curves.

ct

Figure A.4. Speedup And Efficiency

238

Figure A.5. Speedup And Queuing Strategy

Local queuing strategies are useful when is high.

In Figure A.5, . We see a small improvement for
local queuing in each case.

pC
1C =

=

p

For further comparison, two selection strategies have
been used for the figure: breadth-first and depth-first. We
see that a breadth-first strategy leads to slightly better
speedups than a depth-first strategy, mainly because tasks
get distributed to idle processors earlier in the search.

A.3 The Maximum Speedup

We now derive the address of the tip node at which
the maximum speedup is attained. As in the previous
section, we assume that , t , and t0pC = 0c 1g = .

We can write the address of a tip node, a , as
follows,

k

 - .ka k n n= + t

j

-1

 (16)
0 .tk n≤ ≤

where k is the index of the tip node. a is also the
number of time units required by a uniprocessor to reach
the tip node with that address, using a breadth-first search
algorithm, under the above assumptions.

k

The number of time units, , required by a
distributed processor to reach the node with address a is
given by,

kt

k

1

0
 .

d
k

j
t d w

−

=
= + ∑ (17)

where , {0, 1, ..., -1}jw b= 0 j d≤ ≤ are the

values of the bits in the b-ary representation of the index,
k.

Hence, the address of the node for which the
maximum speedup is attained, s

maxa , is the that
maximizes

ka
/ .k ka t

References

[Buchanan, 1978]
B.C. Buchanan and T.M. Mitchell, Model-Directed
Learning Of Production Rules. In D.A. Waterman
and F. Hayes-Roth (Eds.), Pattern-Directed
Inference Systems. New York: Academic Press,
1978, pp. 297-312.

[Carhart, 1976]
R.E. Carhart and D.H. Smith, Applications Of
Artificial Intelligence For Chemical Inference XX.
Intelligent Use Of Constraints In Computer-
Assisted Structure Elucidation. Computers In
Chemistry, Vol. 1, 1976, p. 79.

[Imai, 1979]
M. Imai, Y. Yoshida, and T. Fukumura, A Parallel
Searching Scheme For Multiprocessor Systems
And Its Application To Combinatorial Problems.
IJCAI6, 1979, pp. 416-418.

[Smith, 1978]
R.G. Smith, A Framework For Problem Solving In
A Distributed Processing Environment. Ph.D.
Dissertation, STAN-CS-78-700 (HPP-78-28) Dept.
of Computer Science, Stanford University,
December 1978.

[Smith, 1979]
R.G. Smith, The Contract Net Protocol: High-Level
Communication And Control In A Distributed
Problem Solver. Proceedings of the First
International Conference On Distributed Computer
Systems, October 1979, pp. 185-192.

239

