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Abstract1

We discuss the implementation of heuristic search 
algorithms in a distributed problem solver whose 
processors interact according to the contract net protocol. 
Task distribution is viewed as a local mutual selection 
process based on a two-way transfer of information 
between processors with tasks to be executed and 
processors with knowledge-sources capable of executing 
those tasks. 

As an example of the approach, we consider the N 
Queens problem. We then derive measures of the speedup 
that can be expected from the application of a distributed 
processor to search problems that involve regular trees, and 
discuss the effect of coupling between processors on 
speedup. Bounds are developed for the number of 
processors that are required to achieve maximum speedup. 

1 Introduction 

Distributed problem solving is the cooperative solution 
of problems by a decentralized and loosely coupled 
collection of knowledge-sources (KSs), each of which 
may reside in a distinct processor node. The KSs 
cooperate by sharing tasks and/or results. By decentralized 
we mean that both control and data are logically and often 
geographically distributed; there is neither global control 
nor global data storage. Loosely coupled means that 
individual KSs spend most of their time in computation 
rather than communication. Such problem solvers offer 
the promise of speed, reliability, extensibility, the ability 
to handle applications with a natural spatial distribution, 
and the ability to tolerate uncertain data and knowledge. 

Search problems are attractive as applications of 
distributed problem solving for three major  
reasons. First, exploration of a search space of  
the size commonly encountered in AI applications 
consumes a large amount of computing time (see, for 
example, discussions of Meta-Dendral [Buchanan, 
1978], and CONGEN [Carhart, 1976]). Thus, the 
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speedup promised by the distributed approach is 
attractive. Second, search problems are often modular in 
form. Numerous relatively independent subtasks are 
created during the course of a search. These subtasks are 
ideal candidates for distribution to individual processors. 
Finally, search is one of the major problem-solving 
paradigms. It is therefore important to develop tools for 
applying the new VLSI technology to search problems. 

2 Task-Sharing And Contract Negotiation 

The contract net protocol [Smith, 1978], [Smith, 
1979] facilitates cooperation of multiple processors in the 
solution of a problem. Dynamic matching of tasks and 
KSs is effected by negotiation. A contract is an explicit 
agreement between a processor that generates a task (the 
manager) and a processor willing to execute the task (the 
contractor). (Note that a processor is assumed to contain 
one or more KSs.) A contract is normally established by a 
process of local mutual selection based on a two-way 
transfer of information. In brief, available contractors 
evaluate task announcements made by several managers 
until they find one of interest. They submit a bid for that 
task. The manager then evaluates the bids received from 
potential contractors and selects the one it determines to 
be most appropriate. Both parties to the agreement have 
evaluated the information supplied by the other and a 
mutual selection has been made. Control is distributed 
because processing and communication are not focussed 
at particular processors, but rather every processor is 
capable of accepting and assigning tasks. 

Contract net messages contain slots for information 
that aids negotiation. A task announcement contains three 
such slots. The eligibility specification is a list of criteria 
that a processor must meet to be eligible to submit a bid. 
It enables a processor receiving the message to decide 
whether or not it is able to execute the task. This 
specification reduces message traffic by pruning 
processors whose bids would be clearly unacceptable. The 
task abstraction is a brief description of the task to be 
executed. It enables a processor to rank the announced 
task relative to other announced tasks. An abstraction is 
used rather than a complete description in order to reduce 
the length of the message. The bid specification is a 
description of the expected form of a bid. It enables a 
processor to include in a bid only the information about its 
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capabilities that is relevant to the task rather than a 
complete description (called a node abstraction). This 
simplifies the task of the manager in evaluating bids and 
further reduces message traffic. 

3 Distributed Search: Overview 

In this section we discuss some general 
characteristics of distributed search. We then show how 
the contract net protocol can be used to organize a 
distributed problem solver to perform such a search. 

Consider the exhaustive search of a tree in a 
distributed processor. To make clear the flow of the 
search, we make the following assumptions: (i) the basic 
task for each processor is generation of a successor node 
in the tree, (ii) as soon as a processor generates a node, it 
distributes that node to another processor for further 
expansion, (iii) generation of each node requires a 
constant processing time, (iv) there is a sufficient number 
of processors so that the expansion of a node can be 
commenced by one processor as soon as the node has 
been generated by another, (v) a processor can distribute a 
successor node to another processor concurrently with 
generation of another successor node, and (vi) distribution 
of a node to a processor and reporting of results require a 
negligible amount of time compared to the time required 
to expand the node. 

The flow of the search process is shown in Figure 1 
for a regular tree of branching factor 2 and depth 3. The 
numbers inside each node circle indicate the time unit at 
which the node was generated and the processor that 
generated it (in the format “time / processor”). 

 

 

 

 

 

 

 

 

 

Figure 1. Distributed Search Of A Regular Tree. 

At time 1, one successor of the root node is 
generated. This successor is distributed (we assume 
instantaneously) to another processor, so that at time 2, 
two successors are generated. The number of processors 
involved in the search rises from 1 to 4 and then decreases 
again to 1 before completion. 

It is apparent that problems that entail a large amount 
of search are especially amenable to a distributed 
approach – they have the potential for large speedups. In 
addition, trees comprised of OR nodes lend themselves 

more readily to concurrent exploration than do those 
comprised of AND nodes. This is because less processor 
synchronization is required for their exploration. Trees 
with Ordered-AND nodes (i.e., nodes that must be 
expanded in a particular order) are the least amenable to 
concurrent exploration because they require the greatest 
amount of synchronization (which inevitably means that 
some processors will stand idle waiting for results to be 
generated by other processors). 

In Appendix A we present performance measures for 
exhaustive distributed search of regular trees. It is shown 
that speedups that are close to linear in the number of 
processors are possible. It has been shown elsewhere (e.g., 
[Imai, 1979]) that better than linear speedups are possible. 
This result follows for problems in which application of 
multiple processors can eliminate fruitless expansion of a 
large number of nodes. We also see from the analysis that 
trees that are bushy near the root lead to larger speedups 
than trees in which bushiness occurs at larger depths. This 
is due to the fact that more processors get involved 
quickly, and the nodes they generate can often be queued 
for later expansion with no increase in search time 
(because of the decreased demand for processors as the 
search nears completion). Finally, it is shown that loose-
coupling must be maintained if maximum speedups are to 
be achieved. 

3.1 Node Selection 

In a distributed search, selection of nodes for 
expansion and generation of their successors are 
asynchronous, local processes. Node selection is 
especially different from the uniprocessor case, where a 
global evaluation function is used to select one node to be 
expanded next. Distributed search strategies have a local 
character because many nodes may be selected 
concurrently for expansion by individual processors, 
usually based on a more local evaluation. 

If interprocessor communication is severely 
constrained, then as a processor generates new nodes, it 
queues them locally for expansion and processes them 
alone as soon as it can (in an order dependent on its search 
strategy). Only when a processor is idle and has no nodes 
queued for expansion does it communicate with other 
processors to acquire new nodes. We call this local 
queuing. The result is a local approximation to one of the 
familiar uniprocessor search strategies. 

It is possible to impose a global search strategy on a 
distributed processor by transmitting all nodes ready for 
expansion to a central repository. A global evaluation 
function can then order the nodes, and idle processors can 
remove them (in order) from the repository. We call this 
global queuing. Unfortunately, it can lead to bottleneck 
and reliability problems. In addition, when 
communication costs are high, it can lead to lower 
speedups than local queuing (see Appendix A). The main 
advantage of global queuing is that it offers the potential 
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for ensuring that the best nodes are expanded first because 
the evaluation function has a global perspective. When 
local queuing is used, other measures must be taken to 
approximate a global perspective. This is an example of 
the general problem of achieving coherent behavior in a 
system that uses distributed control. Distributed control is 
necessary if the advantages of distributed problem solving 
are to be achieved – but it leads directly to a problem in 
maintaining global coherence. 

Better approximations to global strategies are 
obtained at the price of interprocessor communication. 
The intent of a best-first search in a uniprocessor, for 
example, is to select the most appropriate node for 
expansion at any given time. If interprocessor 
communication is severely constrained, then an individual 
processor can only select the best of the nodes that it has 
stored locally; and none of these nodes may be the overall 
best node to be expanded. If the processors can 
communicate mere extensively with each other, then 
several of the overall best nodes can be concurrently 
selected for expansion by separate idle processors. We 
will see how this is done with the contract net protocol in 
the next section. 

4 Example: The N Queens Problem 

The goal of the N Queens problem is to place N 
queens on an N x N chessboard in such a way that no two 
are on the same row, column, or diagonal. We discuss one 
possible implementation of this problem as a simple 
introductory example of the issues that arise in an 
application of distributed problem solving. Section 4.1 
shows sample messages transmitted by processors during 
the solution of the problem. 

The processor at which the problem is started (the 
top-level processor) begins with an empty board. It 
generates N subtasks, each of which corresponds to a 
partial board with 1 queen in the first column and in a 
different row for each subtask. These subtasks are 
announced. Bids are submitted by other idle processors. 
Successful bidders are awarded contracts for the task of 
extending the partial boards to completion. The top-level 
processor is the manager for this task. (It is now free to 
become a contractor for future subtasks.) 

This process is continued recursively for each column 
of the board; that is, the contractors trying to extend 
partial boards (here, with 1 queen already placed) 
generate independent subtasks by placing a queen in the 
next column (here, the second column) under the no-
capture constraint. They then distribute the subtasks (and 
take on the role of manager for them). 

There is thus only one type of task for all 
processors—extension of a partial board. When a 
processor node places the Nth queen, and thus has a 
complete solution to the problem, it reports to its

manager. (Similarly, when a processor cannot further 
extend a partial board, it reports to its manager.) Further 
reports ripple upward to the top level and the search 
terminates when some pre-specified number of solutions 
has been compiled; that is, when any manager has 
received the required number of solutions, it terminates 
any outstanding subtasks within its span of control and 
reports to its own manager. This manager in turn 
terminates outstanding subtasks, and so on. Ultimately, 
the top-level node reports the solutions to the user. 

The task abstraction of each task announcement 
specifies the type of task to be executed and the present 
state of the task, relative to the goal state (in this case, the 
number of queens that have already been placed on the 
partial board). The number of queens placed gives a 
potential contractor a method for ranking announced tasks 
in order to select a task for submission of a bid. It is used 
by processors in this example to effect an approximation 
to the desired global search strategy. A breadth-first 
strategy, for example, is implemented by ranking boards 
that have a small number of queens placed higher than 
those that have a larger number of queens placed. Bids are 
submitted first for these boards, and they are therefore 
generally executed before the others.2

We pointed out earlier that one of the problems 
associated with distributed control is approximation of the 
global perspective that enables a uniprocessor to select the 
best nodes for expansion at any time. This problem is 
handled in a contract net as follows: Each processor 
listens to all task announcements and maintains a list of 
recent announcements. When a processor goes idle, it 
selects, according to its own criteria, the current optimum 
task for which to submit a bid from among the tasks 
contained in its list. Each processor therefore has a kind of 
window through which to view the currently available 
tasks. This window lends a more global character to the 
search strategy because node selection is based on 
information received from a number of processors. The 
cost is local storage (for the list of tasks) and 
communication (to gain information about tasks available 
from other processors). 

Two possible eligibility specifications are shown. The 
first is a null specification. The assumption here is that all 
processors have the necessary procedures for executing 
the extend-board task. A bid then simply indicates that a 
processor is willing to execute the announced task, and 
the contract is awarded to the first bidder. In the second 
case, the eligibility specification names the required 
procedures. The assumption here is that not all processors 
are pre-loaded with the necessary procedures. A potential 
contractor can submit a bid indicating that it needs the 
procedures to execute the task. In this case the contract is 
awarded to the first processor that has the procedures, or, 
in the absence of any such bidders, to the first bidder. This 
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is an example of dynamic transfer of knowledge. (See 
[Smith, 1978] for a more extensive discussion.) A simple 
award strategy (i.e., award to the first bidder) is possible 
for this problem because any processor with the 
procedures has the capability to execute the task. 

4.1 Sample Messages 

<The processor given responsibility for the top-level task 
issues messages of the following form as it generates the 
first subtasks.> 

To: * <“*” indicates a broadcast message.> 
From: 1 
Type: TASK ANNOUNCEMENT 
Contract: 1 

Task Abstraction: 
 TASK TYPE EXTEND-BOARD 
 BOARD QUEENS 1 

Eligibility Specification: 
 NIL <or> PROCEDURE NAME EXTEND-BOARD 

Bid Specification: 
 NIL 

 

To: 1  <Idle processors respond.> 
From: i 
Type: BID 
Contract: 1 

Node Abstraction: 
 NIL <or> REQUIRE PROCEDURE NAME EXTEND-BOARD 

 

To: i  <To the successful bidder.> 
From: 1 
Type: AWARD 
Contract: 1 

Task Specification: 
 BOARD SPECIFICATION (...) 
 PROCEDURE NAME EXTEND-BOARD CODE (...) 
  <If required.> 

 

To: k <Eventually, messages like 
From: q this are transmitted.> 
Type: REPORT 
Contract: j 

Result Description: 
 SUCCESS 
 BOARD SPECIFICATION (...) 
<or> 
 FAILURE 

 

To: n <When enough solutions have been 
From: m accumulated by a manager, it 
Type: TERMINATION sends messages like this 
Contract: i to its contractors.> 
 

5 Summary 

We have shown the use of the contract net protocol in 
the solution of a search problem. The negotiation process 
is particularly simple for this problem and a minimal 
amount of information needs to be transferred between 
processors. Consequently, only a degree of the power of 
the approach is demonstrated. The main use of the 
protocol in this example is to make connections between 
processors for reliable distribution of the processing load 
and communication of results. Processors are efficiently 
used because they can take on multiple roles: A processor 
that has generated all 1-queen extensions to the current 
board and distributed them to other processors 
(contractors) need only deal with reports occasionally (in 
its role as manager). It is therefore free to act as a 
contractor for other tasks. The result is that no processors 
remain idle as long as there are tasks to be executed. 
Furthermore, processors are able to obtain the procedures 
necessary to execute tasks as part of the negotiation 
process. Finally, the explicit manager-contractor links 
assist in rapid local pruning of the search space (via 
termination messages) when a sufficient number of 
solutions has been found. Each manager can directly 
terminate the execution of subtasks being executed by its 
contractors as soon as it becomes aware that the results 
are no longer required. The net does not have to wait for 
reports to reach the top-level processor before subtasks 
are terminated. 

We have demonstrated the utility of negotiation as an 
approach to the problem of maintaining global coherence 
in a system that uses distributed control. The problem is 
by no means solved, however, and is a focal point for 
further research. One of the extensions currently under 
examination is to have processors listen more carefully to 
the message traffic around them. At present, only task 
announcements are examined by all processors. It may 
prove beneficial for other messages (e.g., bids, awards, 
and reports) to be subjected to the same scrutiny. It may, 
for example, lead to more informed bid and award 
strategies. 

Appendix A 

Distributed Search Analysis 

We derive bounds on the performance that can be 
expected from distributed search of regular trees. 
Although we only explicitly consider regular trees in this 
analysis, the results are easily extended to a more general 
class of trees – those that are compositions of regular 
trees. (See [Smith, 1978] for details.) 
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A.1 Speedup 
The total number of nodes, n, in a regular tree 

structure with depth d and branching factor b is, 
1 (  -  1) /(  -  1).dn b b+=  (1) 

The number of tip nodes, , in such a tree is tn
.d

tn b=  (2) 
The time required for the search is the most 

appropriate measure of performance for a distributed 
processor. The traditional uniprocessor measure of 
number of nodes examined is still a valid measure of the 
power of the search strategy, but is insufficient to capture 
the effect of multiple processors. 

A.1.1 Uniprocessor Search 
The search time divides into two components: the 

time to expand a node, , (i.e., the time required to 
generate all successor nodes of a node), and the time to 
select a new node for expansion, 

et

st . The time to expand a 
node can be rewritten in terms of the time required to 
generate a single successor node, gt , as follows, 

  .et b t= ⋅ g

t⋅

t⋅

 (3) 
The minimum time to find one goal node in a regular 

tree is achieved if the tree is searched in a depth-first 
fashion and no false paths are explored. Under this 
assumption, the uniprocessor search time, , is, u

mint
  ((  -  1)   1)   (  -  1) .u

min g st d b t d= ⋅ + ⋅ +  (4) 
We have assumed that a node is completely expanded 

(i.e., all successor nodes are generated) before a new node 
is selected for expansion, and that the goal node can be 
recognized as soon as it is generated. We do not consider 
search strategies where only some of the successors of a 
node are generated before a new node is selected for 
expansion. (See [Smith, 1978] for treatment of this type 
of strategy.) 

The maximum uniprocessor time, , is achieved 
when exhaustive search of the tree must be performed 
before the goal node is found. In this case, the search time 
is, 

u
maxt

  (  -  1)   (  -  1 -  ) .u
max g t st n t n n= ⋅ +  (5) 

A.1.2 Distributed Processor Search 
We assume the search strategy is as presented in 

Section 3; that is, a node is distributed for expansion by 
another processor as soon as it is generated; there is thus 
no time required for selection of nodes and the search 
time depends on the time to generate a successor node, 

gt , and the time to distribute a node to another processor, 

. We assume that the  cost must be incurred any time 
the expansion of a node is started by a processor, even if 

the node was generated by that processor. This is the case 
if global queuing is used. It leads to a somewhat 
pessimistic estimate for search time (and therefore 
speedup) but simplifies the analysis. We will later drop 
this assumption. 

ct ct

The minimum time for a distributed processor to find 
a single node in a regular tree, , is, d

mint
=   (  -  1) .d

min g ct d t d t⋅ + ⋅

t

 (6) 

The maximum time, , is given by, d
maxt

   (  -  1) .d
max g ct d b t d= ⋅ ⋅ + ⋅  (7) 

This is equivalent to the time required to expand the 
nodes that border the tree on one side. 

A.1.3 Comparison 

The speedup for exhaustive, or maximum, search, 
, is given by, maxeS

/u d
maxe max maxS t t=  (8) 

Note that  is not the maximum attainable 
speedup for a regular tree. It is, however, a convenient 
measure for comparison. We will later derive the address 
of the tip node for which the maximum speedup is 
attained. 

maxeS

Note also that as the selectivity of the search strategy 
is augmented, thus diminishing the need for exhaustive 
search, the advantage of concurrent computation is also 
diminished. 

In order to draw some simple conclusions from the 
equation, we will assume that maxeS s gt t . Under this 

assumption, 

max (  -  1) /(   (  -  1) ( / )).e cS n d b d t tg≈ ⋅ + ⋅  (9) 
/c gt t is a measure of the coupling between processor 

nodes for the distributed search problem. We call this 
ratio the processor-coupling-factor, . (Note that it 
depends on both the characteristics of the task and the 
characteristics of the distributed processor.) Thus, 
rewriting (9), we have, 

pC

max (  -  1) /(   (  -  1) ).e pS n d b d C≈ ⋅ + ⋅  (10) 
Figure A.1 shows the variation in  as a function 

of  for a regular tree of branching factor 3 and depth 
6. The cost of a mismatch between the task grain size and 
the communications characteristics of the distributed 
processor is apparent: Loose-coupling must be ensured by 
a proper match of task grain size to distributed processor 
communications characteristics if a significant speedup is 
to be achieved. 

maxeS

pC

Figure A.2 shows the maximum speedups attainable 
for exhaustive search of three regular trees, of branching 
factor 2, 3, and 6, as a function of depth, under the 
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assumption that . Also shown is , obtained by 
comparing the minimum time for a distributed processor 
to search a regular tree, , with the minimum time 

required for a uniprocessor, , assuming that all 
successors of a node must be generated before a new node 
can be selected for expansion. 

0pC = minS

d
mint

u
mint

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1. Speedup And Coupling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2. Speedup For Three Regular Trees 

A.2 Processor Requirement 

We derive lower and upper bounds on the number of 
processors, , required in a distributed processor to 
obtain the maximum speedup for the exhaustive search of 
a regular tree. We assume that , and that 

maxP

0ct = 1gt = . 

As a lower bound, it is apparent that at least  
processors are required to achieve a speedup of . 
This is overly optimistic because it assumes that all 
processors are fully utilized throughout the period of the 
computation. Near the start and end of the search, 
however, very few processors are in use. 

maxeS

maxeS

In order to improve the estimate, consider the rate at 
which processors are pressed into service as the search 
progresses. The number of new tasks generated at each 
successive time unit in the search of a tree of infinite 
depth and branching factor b is given by the following 
generalized Fibonacci series of order b, 

* * * *
-1 -2 - (     ...  ).j j j jP P P P= + + + b

⋅

 (11) 

  1,2,3,  ...j =  
*   0,    -1.jP j= <  
* *
-1 0,    1.P P =  

where the “*” superscript is used to indicate that the 
series is written for a tree of infinite depth. To account for 
the finite depth of the trees of interest, the equation can be 
modified as follows. Observe that whenever a processor 
reaches a tip node in the tree, the effect is to prune a 
subtree from the infinite tree. This pruning begins after d 
time units. We can account for the pruning of these 
subtrees by subtracting Fibonacci series, that start at times 
when processors reach tip nodes, from the original series. 
The number of series to be subtracted at each time instant 
corresponds to the number of tip nodes reached at that 
time instant. The number of tip nodes reached at each 
instant of time (starting at the  time instant, when the 
first tip node is reached, to the b d  time instant, when 
the search is completed) is given by, 

thd
th

 ( ,  - ).j bk C d j d=  (12) 

 , 1, 2,  ...,  .j d d d b d= + + ⋅  
  0,    ,    .jk j d j b= < > ⋅d  

where  is the coefficient in the  row 

and the  column of the m-arithmetic triangle. In 
general, the  obey the equation, 

( ,  )mC n k thn
thk

( ,  )mC n k
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( ,  )  ( -1,  )  ( -1,  -1) m m mC n k C n k C n k= + +

0.

 (13) 

... + ( -1,  - 1).mC n k m +  

0 ( -1),   k n m n≤ ≤ ⋅ ≥  

(0,  0)  1mC =  

(1,  )  1,    0 -1.mC k k m= ≤ ≤  

(1,  )  0,      .mC k k m= ≥  

Thus the number of processors required, jP , is given 
by, 

* * * *
- 1 -( 1  -   -   -j j d j d d j dP P k P k P+ += ⋅ ⋅ )  (14) 

*
-( )... -  .b d j b dk P⋅ +⋅  

  0,1,2,  ...,  .j b d= ⋅  

And an upper bound on the number of processors 
required is given by, 

 

  ( ).max jP MAX P=  (15) 

0 .j b d≤ ≤ ⋅  

This estimate is an upper bound because of the 
assumption that nodes cannot be queued for later 
expansion, but instead must be expanded as soon as they 
are generated. This is not generally required because of 
the lower demand for processors as the search nears 
completion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.3. Processor Requirement 

Figure A.3 shows the two bounds for the required 
number of processors for exhaustive search of the same 
three trees as used in Figure A.2. Also shown (by dashed 
lines) is the actual number of processors required to 
achieve the maximum exhaustive search speedups (as 
determined by simulation). 

Figure A.4 shows the increase in normalized speedup 
for a tree of branching factor 3 and depth 6 as the number 
of processors is varied. Also shown is the corresponding 
decrease in efficiency (i.e., speedup per processor). This is 
a conservative estimate of efficiency, in that it includes 
processors that stand idle near the start and end of the 
search. These processors might be applied to another top-
level problem during this time in a general-purpose 
distributed processor. 

We noted earlier that the speedup estimates for 
distributed processor search are slightly pessimistic, 
because of the assumption that the cost is always 
incurred when a processor acquires a node for expansion. 
In Figure A.5, we show the effects of dropping this 
assumption. The figure compares the possible speedups 
for varying numbers of processors on a tree of depth 6 and 
branching factor 3 for both the global queuing of nodes to 
be expanded and the local queuing of such nodes. The 
speedups are normalized to that attainable with a global 
queuing strategy. A small number of sample points are 
marked with symbols to allow the reader to distinguish 
between the curves. 
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Figure A.4. Speedup And Efficiency 
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Figure A.5. Speedup And Queuing Strategy 

Local queuing strategies are useful when  is high. 

In Figure A.5, . We see a small improvement for 
local queuing in each case. 

pC
1C =

=

p

For further comparison, two selection strategies have 
been used for the figure: breadth-first and depth-first. We 
see that a breadth-first strategy leads to slightly better 
speedups than a depth-first strategy, mainly because tasks 
get distributed to idle processors earlier in the search. 

A.3 The Maximum Speedup 

We now derive the address of the tip node at which 
the maximum speedup is attained. As in the previous 
section, we assume that , t , and t0pC = 0c 1g = . 

We can write the address of a tip node, a , as 
follows, 

k

     -  .ka k n n= + t

j

-1

 (16) 
0 .tk n≤ ≤  

where k is the index of the tip node. a  is also the 
number of time units required by a uniprocessor to reach 
the tip node with that address, using a breadth-first search 
algorithm, under the above assumptions. 

k

The number of time units, , required by a 
distributed processor to reach the node with address a  is 
given by, 

kt

k

1

0
    .

d
k

j
t d w

−

=
= + ∑  (17) 

where ,   {0,  1,  ...,  -1}jw b= 0 j d≤ ≤  are the 

values of the bits in the b-ary representation of the index, 
k. 

Hence, the address of the node for which the 
maximum speedup is attained, s

maxa , is the that 
maximizes  

ka
/ .k ka t
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