
Form and Content
In

Knowledge-Intensive Development Environments
Reid G. Smith

Schlumberger Palo Alto Research
3340 Hillview Ave.

Palo Alto, CA 94304
USA

Eric Schoen

Stanford University
Stanford, CA 94305

USA

Future Knowledge Engineering Environments Panel
IEEE CompCon, February 1987

The central problem in knowledge-based system construction is knowledge acquisition—
moving real-world knowledge into a software system—by whatever means—and making it
work. This is not simply a problem encountered in the initial stages of design—although,
even if it were, it would be a serious enough problem. Rather, it is an omnipresent prob
lem that extends over the complete lifetime of a KBS—during initial design, continuing
extension of the knowledge base, integration with other systems, and application to new
problems.

One of the ways by which we are attempting to impact the knowledge acquisition bot-
tleneck is through construction of knowledge-intensive development environments—highly
interactive environments that allow direct interaction by both KBS developers and domain
specialists.

A knowledge-intensive development environment has two essential, interrelated compo-
nents; a representation and reasoning substrate, and an interaction substrate. The rep-
resentation and reasoning substrate, which we assume to be object-oriented, integrates
distinct problem-solving subsystems involving objects, rules, constraints, contexts, and ex-
planation. This substrate has knowledge of the use of the individual subsystems, problem-
solving methods, and basic knowledge of the domains in which it is applied.

1

http://www.rgsmithassociates.com/About.htm

It has been standard to concentrate on representation and reasoning in discussions of
the future of development environments—every current KBS shell has at least a rudi-
mentary representation and reasoning substrate. In a sense, this is the content part of a
development environment. There is, however, another very important part—the form
part—which we call the interaction substrate.

The interaction substrate provides a set of tools for constructing interactive user inter-
faces to knowledge-based systems. It must support three different perspectives, corre-
sponding to three different types of user: (i) the developer/maintainer; (ii) the domain
specialist; and (iii) the end user. The substrate must provide a reactive environment for
developer/maintainers. It must allow domain specialists to focus on the encoded do-
main knowledge, hiding the underlying representational mechanisms, and provide direct
expression and interaction in the natural terms of the domain. Finally, the substrate
must permit the construction of transparent and “easy-to-use” interfaces for end users.
Our recent work on Impulse-86 [3] indicates that it is possible to construct an interaction
substrate that meets the needs of all three user groups.

We have concentrated on the interaction substrate over the past year for two main rea
sons. First, a powerful interaction substrate simplifies knowledge acquisition. The domain
specialist may interact directly with the evolving system in order to examine the knowl-
edge base for gaps, weaknesses, and misunderstandings; and expand, refine, and correct
the encoded knowledge. This direct interaction is further simplified when the specialist
can articulate his approaches to solving problems via familiar modes of expression (e.g.,
pictures or equations), in the natural terms and notation of his domain. When direct in-
teraction is possible, the bandwidth of the communication between domain specialist and
knowledge engineer is increased. They can concentrate on the required domain knowledge
and problem-solving methodology—as opposed to the underlying programming mechan-
ics. Interactive graphics—supported by the interaction substrate—plays a large part both
in articulation of methodology and in explanation of system operation.

Second, it is by now well-understood that good interfaces account for a sizable percentage
of the overall code in many systems. In addition, the user interface is often the critical
module. It is what people see–end users and domain specialists alike. It provides the data
from which users form mental models of how the overall system operates, and hypotheses
about its behavior in new situations [2]. Many of our systems appear to a user as sophis-
ticated graphics terminals—albeit with a strong representation and reasoning component.
In our domains of interest, the problems are such that a symbiotic man-machine interac
tion is very attractive, and may be essential to success. Hence a KBS shell which supports
only the representation and reasoning parts of an application—and provides no assistance
for the interaction part—leaves a sizeable problem for application developers. Therefore,
we feel compelled to provide a shell that supports interaction as well as problem-solving.

Serendipitously, the representation and reasoning substrate already contains tools well-

2

suited to user interface design. The object-oriented paradigm so useful in domain knowl-
edge base construction is equally viable for encoding and organizing interface constructs
like editors, windows, menus, and views. Furthermore, reasoning mechanisms already in
place can be brought to bear on the management of user interaction. For example, con-
straint systems which support problem solving can be used to help maintain consistency
during user interaction. Rules can be used to infer missing or dependent information. The
same browsing techniques used by the developer to explore the system code can support
graphical explanation—for developers, domain specialists, and end users alike.

In retrospect, this comes as no surprise. We can view human-computer interaction—
especially in the context of knowledge-based systems—as a form of discourse, one of the
most knowledge-intensive activities in which we engage [1]. For effective communication,
each participant must be aware of the preconceptions, intentions, and specialized vocab-
ulary of the other. Further, much is often left unstated during discourse, to be inferred by
the participants. Analogies to discourse can be drawn in a knowledge-intensive de-
velopment environment. The interaction substrate must reason about the background,
sophistication, and intentions of its user, as well as the available domain knowledge, to
construct specialized views. It also must often infer information left implicit by the user.
In fact, the interaction substrate is itself a knowledge-based system; thus, it is only natural
that its needs are well matched to the services offered by the representation and reasoning
substrate.

The bottom line, then, for future development environments is that attention should be
paid to both form and content.

Acknowledgements: These ideas have been developed through many interactions with
members of the Knowledge-Based Systems group at Schlumberger-Doll Research, espe-
cially Robert L. Young.

References
[1] Michael Brady and Robert C. Berwick, editors. Computational Models of Discourse.

MIT Press, Cambridge, MA, 1983.

[2] J. Seely Brown. From Cognitive to Social Ergonomics and Beyond, pages 457-486.
Lawrence Erlbaum Associates, Hillsdale, N. J., 1986.

[3] R. G. Smith, R. Dinitz, and P. Barth. Impulse-86: A Substrate for Object-Oriented
Interface Design. In Proceedings of the First ACM Conference on Object Oriented
Systems, Languages, and Applications, pages 167-176, September 1986.

3

The form IS The Content

Slogan1

1 Each panelist was asked to generate a comparatively polarizing and challenging s l o g a n as
the central theme of his presentation—to highlight differences in perspective and stimulate a
vigorous discussion.

4

The form IS The Content

a very important part of
↑

5

KNOWLEDGE ACQUISITION IS THE
OMNIPRESENT PROBLEM

The problem is moving real-world knowledge into a
software system—by whatever means—and making
it work. It extends over the complete lifetime of a
system—during initial design, continuing extension
of the knowledge base, integration with other
systems, and application to new problems.

Knowledge acquisition and explanation are two
aspects of a dialogue between a user and a system.

User interfaces are of critical importance during
knowledge-based system development and use.

6

User Interfaces ➭ Knowledge-Based Systems

During the incremental refinement process that
typifies KBS development, high quality user
interfaces are essential.

 • Expression and Interaction in Domain Terms
 • Direct Interaction by Domain Specialist
 • Focus of Knowledge Engineer and Domain

Specialist on Domain Knowledge and
Problem-Solving Methodology

 • Explanation and Debugging
 • Interactive Graphics

7

Knowledge-Based Systems ➭ User Interfaces

More than 50% of KBS code may support the user
interface. If a KBS toolkit serves only to build the
representation & inference parts of an application, a
sizeable problem remains for developers.

The user interface is often the critical module. It is
what people see—end users and domain specialists
alike. It provides the data from which users form
mental models of how the overall system operates,
and hypotheses about its behavior in new situations.

The representation substrate already contains tools
well-suited to user interface design.

 • Object-Oriented Encoding of Interface Constructs
 • Interpretation of Knowledge Base to Specialize

Views and Interaction Methods
 • Constraints to Maintain Consistency
 • Rules to Infer Missing or Dependent Information

8

9

10

11

12

13

KNOWLEDGE-INTENSIVE
DEVELOPMENT ENVIRONMENTS

Representation Substrate (e.g., object-oriented)

 Integration of Objects, Procedures, Rules,
 Constraints, Dependencies,
 Contexts, Explanation, …

 Knowledge of Use of Components,
 Problem-Solving Methods,
 Generic Domains, …

Interaction Substrate

 Clients: Developer/Maintainer
 Domain Specialist
 End User

The needs of all client types can be
met with a single extensible substrate

14

