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Abstract — Two forms of cooperation in distributed problem solving are 

considered: task-sharing and result-sharing. In the former, nodes assist each 
other by sharing the computational load for the execution of subtasks of  
the overall problem. In the latter, nodes assist each other by sharing partial 
results which are based on somewhat different perspectives on the overall 
problem. Different perspectives arise because the nodes use different 
knowledge sources (KS’s) (e.g., syntax versus acoustics in the case of a 
speech-understanding system) or different data (e.g., data that is sensed at 
different locations in the case of a distributed sensing system). Particular 
attention is given to control and to internode communication for the two 
forms of cooperation. For each, the basic methodology is presented and 
systems in which it has been used are described. The two forms are then 
compared and the types of applications for which they are suitable are 
considered. 

I. DISTRIBUTED PROBLEM SOLVING 
ISTRIBUTED problem solving is the cooperative 
solution of problems by a decentralized and loosely 

coupled collection of knowledge sources (KS’s) (proce-
dures, sets of rules, etc.), located in a number of distinct 
processor nodes. The KS’s cooperate in the sense that no  
one of them has sufficient information to solve the entire 
problem; mutual sharing of information is necessary to 
allow the group as a whole to produce an answer. By 
decentralized we mean that both control and data are  
logically and often geographically distributed; there is 
neither global control nor global data storage. Loosely 
coupled means that individual KS’s spend the great per-
centage of their time in computation rather than communi-
cation. 

Distributed problem solvers offer advantages of speed, 
reliability, extensibility, the ability to handle applications 
with a natural spatial distribution, and the ability to tolerate 
uncertain data and knowledge. Because such systems are 
highly modular they also offer conceptual clarity and sim-
plicity of design. 

Although much work has been done in distributed 
processing, most of the applications have not addressed 
issues that are important for the design of artificial intelli-
gence (AI) problem solvers. For example, the bulk of the 
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processing is usually done at a central site with remote 
processors limited to basic data collection (e.g., credit card 
verification). While it is common to distribute data and 
processing, it is not common to distribute control, and the 
processors do not cooperate in a substantive manner. 

Researchers in the area of distributed processing have  
not taken problem solving as their primary focus. It has 
generally been assumed, for example, that a well-defined 
and a priori partitioned problem exists and that the major 
concerns lie in an optimal static distribution of tasks, 
methods for interconnecting processor nodes, resource al-
location, and prevention of deadlock. Complete knowledge 
of timing and precedence relations between tasks has gen-
erally been assumed, and the major reason for distribution 
has been taken to be load balancing (see for example [1], 
[3]). Distributed problem solving, on the other hand, in-
cludes as part of its basic task the partitioning of a  
problem. 

Perhaps the most important distinction between dis-
tributed problem solving and distributed processing sys-
tems can be found by examining the origin of the systems 
and the motivations for interconnecting machines. Dis-
tributed processing systems often have their origin in an 
attempt to synthesize a network of machines capable of 
carrying out a number of widely disparate tasks. Typically, 
several distinct applications are envisioned, with each ap-
plication concentrated at a single node (as for example in a 
three-node system intended to do payroll, order entry, and 
process control). The aim is to find a way to reconcile any 
conflicts and disadvantages arising from the desire to carry 
out disparate tasks, in order to gain the benefits of using 
multiple machines (sharing of data bases, graceful degrada-
tion, etc.). Unfortunately, the conflicts that arise are often 
not simply technical (e.g., word sizes and data base for-
mats) but include sociological and political problems as 
well [6]. The attempt to synthesize a number of disparate 
tasks leads to a concern with issues such as access control 
and protection, and results in viewing cooperation as a  
form of compromise between potentially conflicting per-
spectives and desires at the level of system design and 
configuration. 

In distributed problem solving, on the other hand, a  
single task is envisioned for the system, and the resources 
to be applied have no other predefined roles to carry out.  
A system is constructed de novo, and as a result the 
hardware and software can be chosen with one aim in 
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mind: the selection that leads to the most effective environ-
ment for cooperative behavior. This also means that coop-
eration is viewed in terms of benevolent problem-solving 
behavior; that is, how can systems that are perfectly willing 
to accommodate one another act so as to be an effective 
team? Our concerns are thus with developing frameworks 
for cooperative behavior between willing entities, rather than 
frameworks for enforcing cooperation as a form of com-
promise between potentially incompatible entities. 

This leads us to investigate the structure of interactions 
between cooperating nodes. We are primarily concerned 
with the content of the information to be communicated 
between nodes and the use of the information by a node  
for cooperative problem solving. We are less concerned 
with the specific form in which the communication is 
effected. 

In this paper two forms of cooperation in distributed 
problem solving are considered: task-sharing and result-
sharing. In the former, nodes assist each other by sharing 
the computational load for the execution of subtasks of the 
overall problem. In the latter, nodes assist each other by 
sharing partial results which are based on somewhat differ-
ent perspectives on the overall problem. Different perspec-
tives arise because the nodes use different KS’s (e.g., syntax 
versus acoustics in the case of a speech-understanding 
system) or different data (e.g., data that is sensed at 
different locations in the case of a distributed sensing 
system). 

For each form, the basic methodology is presented, and 
systems in which it has been used are described. The utility 
of the two forms is examined, and their complementary 
nature is discussed. 

The physical architecture of the problem solver is not of 
primary interest here. It is assumed to be a network of 
loosely coupled, asynchronous nodes. Each node contains a 
number of distinct KS’s. The nodes are interconnected so 
that each node can communicate with every other node by 
sending messages. No memory is shared by the nodes. 

II. COOPERATING EXPERTS 
A familiar metaphor for a problem solver operating in a 

distributed processor is a group of human experts experi-
enced at working together, trying to complete a large task. 
This metaphor has been used in several AI systems [10]-
[12], [18]. Of primary interest to us in examining the 
operation of a group of human experts is the way in which 
they interact to solve the overall problem, the manner in 
which the workload is distributed among them, and how 
results are integrated for communication outside the group. 

It is assumed that no one expert is in total control of the 
others, although one expert may be ultimately responsible 
for communicating the solution of the top-level problem to 
the customer outside the group. In such a situation each 
expert may spend most of his time working alone on 
various subtasks that have been partitioned from the main 
task, pausing occasionally to interact with other members  
of the group. These interactions generally involve requests 
for assistance on subtasks or the exchange of results. 

Individual experts can assist each other in at least two 
ways. First, they can divide the workload among them-
selves, and each node can independently solve some sub-
problems of the overall problem. We call this task-sharing 
(as in [11] and [18]). In this mode of cooperation, we are 
primarily concerned with the way in which experts decide 
who will perform which task. We postulate that one inter-
esting method of effecting this agreement is via negotia-
tion. 

An expert (El) may request assistance because he en-
counters a task too large to handle alone, or a task for 
which he has no expertise. If the task is too large, he will 
first partition it into manageable subtasks, and then at-
tempt to find other experts who have the appropriate skills 
to handle the new tasks. If the original task is beyond his 
expertise, he immediately attempts to find another more 
appropriate expert to handle it. 

In either case, if E1 knows which other experts have the 
necessary expertise, he can notify them directly. If he does 
not know anyone in particular who may be able to assist 
him (or if the task requires no special expertise), then he 
can simply describe the task to the entire group. 

If another expert (E2) believes he is capable of carrying 
out the task that E1 described, he informs E1 of his 
availability and perhaps indicates any especially relevant 
skills he may have. E1 may discover several such volunteers 
and can choose from among them. The chosen volunteer 
then requests additional details from El, and the two 
engage in further direct communication for the duration of 
the task. 

Those with tasks to be executed and those capable of 
executing the tasks thus engage each other in a simple form 
of negotiation to distribute the workload. They form sub-
groups dynamically as they progress towards a solution.1

When subproblems cannot be solved by independent 
experts working alone, a second form of cooperation is 
appropriate. In this form, the experts periodically report to 
each other the partial results they have obtained during 
execution of individual tasks. We call this result-sharing 
(as, for example, in [12] and [13]). It is assumed in this 
mode of cooperation that problem partitioning has been 
effected a priori and that individual experts work on sub-
problems that have some degree of commonality (e.g., 
interpreting data from overlapping portions of an image). 
An expert (El) reports a partial result for his subprob- 
lem to his neighbors (E2 and E3) when that result may 
have some bearing on the processing being done by them. 
(For example, a partial result may be the best result that  
E1 can derive using only the data and knowledge available 
to him.) E2 and E3 attempt l) to use El’s result to confirm 
or deny competing results for their subproblems, or 2) to 

1Subgroups offer two advantages. First, communication among the 
members does not needlessly distract the entire group. This is important 
because communication itself can be a major source of distraction and 
difficulty in large groups (see, for example, [91). Thus one of the major 
purposes of organization is to reduce the amount of communication that  
is needed. Second, the subgroup members may be able to communicate 
with each other in a language that is more efficient for their purpose than 
the language in use by the entire group. 
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Fig. 1.   Phases of distributed problem solving. 

aggregate partial results of their own with El’s result to 
produce a result that is relevant to El’s subproblem as well 
as their own, or 3) to use El’s result to indicate alternative 
lines of attack that they might take to solve their own 
subproblems. 

III. A PERSPECTIVE ON DISTRIBUTED PROBLEM  
SOLVING 

In this section we present a model for the phases that a 
distributed problem solver passes through as it solves a 
problem (Fig. 1). The model offers a framework in which  
to anchor the two forms of cooperation that are the primary 
focus of this paper. It enables us to see the utility of the  
two forms, the types of problems for which they are best 
suited, and the way in which they are complementary.2

In the first phase, the problem is decomposed into 
subproblems. As Fig. 1 shows, the decomposition process 
may involve a hierarchy of partitionings. In addition, the 
process may itself be distributed in order to avoid bot-
tlenecks. Decomposition proceeds until kernel (nondecom-
posable) subproblems are generated. Consider as an 
example a simple distributed sensing system (DSS). In the 
problem decomposition phase, the subproblems of detect-
ing objects in specific portions of the overall area of 
interest are defined and distributed among the available 
sensors. 

The second phase involves solution of the kernel sub-
problems. As shown in the figure, this may necessitate 
communication and cooperation among the nodes attempt-
ing to solve the individual subproblems. In the DSS exam-
ple, communication is required in the subproblem solution 
phase 1) if objects can move from one area to another so 
that it is helpful for sensors to inform their neighbors of  
the movement of objects they have detected, or 2) if it is 
difficult for a single sensor to reliably detect objects without 
assistance from other sensors. 

Answer synthesis is performed in the third phase; that is, 
integration of subproblem results to achieve a solution to 
the overall problem. Like problem decomposition, answer 
synthesis may be hierarchical and distributed. In the DSS 

example, the answer synthesis phase involves generation of  
a map of the objects in the overall area of interest. 

 
 2It will be apparent that the model is also applicable to centralized  

problem solving. The distinct phases, however, are more obvious in a  
distributed problem solver, primarily because communication and cooper- 
ation must be dealt with explicitly in this case. 

For any given problem, the three phases may vary in 
complexity and importance. Some phases may either be 
missing or trivial. For example, in the traffic-light control 
problem considered in [13], the problem decomposition 
phase involves no computation. Traffic-light controllers are 
simply placed at each intersection. For a DSS, the problem 
decomposition is suggested directly by the spatial distribu-
tion of the problem.3

There is also no answer synthesis phase for traffic-light 
control. The solution to a kernel subproblem is a smooth 
flow of traffic through the associated intersection. There is 
no need to synthesize an overall map of the traffic. Thus  
the solution to the overall problem is the solution to the 
kernel subproblems. (This is generally true of control prob-
lems; note that it does not mean, however, that communi-
cation among the nodes solving individual subproblems is 
not required.) 

Many search problems (like symbolic integration [16]) 
also involve a minimal answer synthesis phase. Once the 
problem has been decomposed into kernel subproblems  
and they have been solved, the only answer synthesis 
required is recapitulation of the list of steps that have been 
followed to obtain the solution. However, for some prob-
lems the answer synthesis phase is the dominant phase. An 
example is the CONGEN program [4]. CONGEN is used  
in molecular structure elucidation. It generates all struct-
ural isomers that are both consistent with a given chemical 
formula and that include structural fragments known to be 
present in the substance (superatoms). In the problem 
decomposition phase, CONGEN generates all structures 
that are consistent with the data (by first generating inter-
mediate structures, then decomposing those structures, and 
so on until only structures that contain atoms or super-
atoms remain). At this point, the superatoms (like the 
atoms) are considered by name and valence only. In the 
answer synthesis phase, the superatoms are replaced by the 
actual structural fragments they represent and are em-
bedded in the generated structures. Because embedding can 
often be done in many ways, a sizable portion of the  
overall computation is accounted for by this phase. 

IV. CAVEATS FOR COOPERATION 
One of the main aims in adopting a distributed approach 

is to achieve high-speed problem solving. In order to do 
this, situations in which processors “get in each other’s 
way” must be avoided. This obviously depends on the 
problem itself (e.g., there are problems for which data or 
computation cannot be partitioned into enough mostly 
independent pieces to occupy all of the processors). Perfor-
mance also depends, however, on the problem-solving archi-
tecture. It is therefore appropriate to consider frameworks 
for cooperation. 

3Note that the problem solver must still implement even an obvious 
decomposition. Nodes must still come to an agreement as to which node  
is to handle which portion of the overall area. 
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It is common in AI problem solvers to partition exper- 
tise into domain-specific KS’s, each of which is expert in a 
particular part of the overall problem. KS’s are typically 
formed empirically, based on examination of different  
types of knowledge that can be brought to bear on a 
particular problem. In a speech-understanding problem,  
for example, knowledge is available from the speech signal 
itself, from the syntax of the utterances, and from the 
semantics of the task domain [7]. The decisions about  
which KS’s are to be formed is often made in concert with 
the formation of a hierarchy of levels of data abstraction  
for a problem. For example, the levels used in the hierarchy 
of the HEARSAY-II speech-understanding system were 
parametric, segmental, phonetic, surface-phonemic, syl-
labic, lexical, phrasal, and conceptual [7]. KS’s are typically 
chosen to handle data at one level of abstraction or to  
bridge two levels (see, for example, [7] and [15]). 

Interactions among the KS’s in a distributed processor  
are more expensive than in a uniprocessor because com-
munication in a distributed architecture is generally much 
slower than computation. The framework for cooperation 
must therefore minimize communication among processors. 
Otherwise, the available communication channels may be 
saturated so that nodes are forced to remain idle while 
messages are transmitted.4

As a simple example of the difficulty that excessive 
communication can cause, consider a distributed processor 
with 100 nodes that are interconnected with a single broad-
cast communication channel. Assume that each of the  
nodes operates at 108 instructions per second; the compu-
tation and communication load is shared equally by all 
nodes, and the problem-solving architecture is such that  
one bit must be communicated by each node for every ten 
instructions that it executes. With these parameters it is 
readily shown that the communications channel must have  
a bandwidth of at least 1 Gbit/s (even ignoring the effect  
of contention for the channel) [18]. With a smaller band-
width, processors are forced to stand idle waiting for 
messages. 

There are, of course, many architectures that do not lead  
to channel bandwidths of the same magnitude. However,  
the point remains that special attention must be paid to 
internode communication and control in distributed prob-
lem solving if large numbers of fast processors are to be 
connected. 

The framework for cooperation must also distribute the. 
processing load among the nodes in order to avoid compu-
tation and communication bottlenecks. Otherwise, overall 
performance may be limited by concentration of dispro-
portionate amounts of computation or communication at a 
small number of processors. It is also the case that the 
control of processing must itself be distributed. Otherwise, 
requests for decisions about what to do next could in time 

 

4The focus here is on speed but the other reasons for adopting a  
distributed approach are also relevant — for example, reliability (i.e., the 
capability to recover from the failure of individual components, with 
graceful degradation in performance) and extensibility (i.e., the capability 
to alter the number of processors applied to a problem). 

 
 
 
 
 
 

Fig. 2.   Task-sharing. 

accumulate at a “controller” node faster than they could be 
processed.5 Distribution of control does, however, lead to 
difficulties in achieving globally coherent behavior since 
control decisions are made by individual nodes without the 
benefit of an overall view of the problem. We will illustrate 
this problem in Section VII. 

V. TASK-SHARING 
Task-sharing is a form of cooperation in which individ- 

ual nodes assist each other by sharing the computational  
load for the execution of subtasks of the overall problem. 
Control in systems that use task-sharing is typically goal-
directed; that is, the processing done by individual nodes is 
directed to achieve subgoals whose results can be in- 
tegrated to solve the overall problem. 

Task-sharing is shown schematically in Fig. 2. The indi-
vidual nodes are represented by the tasks in whose execu-
tion they are engaged. 

The key issue to be resolved in task-sharing is how tasks 
are to be distributed among the processor nodes. There  
must be a means whereby nodes with tasks to be executed 
can find the most appropriate idle nodes to execute those 
tasks. We call this the connection problem. Solving the 
connection problem is crucial to maintaining the focus of  
the problem solver. This is especially true in AI applica- 
tions because they do not generally have well-defined 
algorithms for their solution. The most appropriate KS to 
invoke for the execution of any given task generally cannot  
be identified a priori, and there are usually far too many 
possibilities to try all of them. 

In the remainder of this section, we consider negotiation  
as a mechanism that can be used to structure node interac-
tions and solve the connection problem in task-shared 
systems. Negotiation is suggested by the observation that  
the connection problem can also be viewed from the per-
spective of an idle node. It must find another node with an 
appropriate task that is available for execution. In order to 
maximize system concurrency, both nodes with tasks to be 
executed and nodes ready to execute tasks can proceed 
simultaneously, engaging each other in a process that re-
sembles contract negotiation to solve the connection prob-
lem. 

In the contract net approach to negotiation [18], [19], a 
contract is an explicit agreement between a node that 
 

5Such a node would also be a hazard to reliability since its failure  
would result in total failure of the system. 
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Fig. 3.   Sending a task announcement. 

 
Fig. 4.   Receiving task announcements. 

generates a task (the manager) and a node willing to 
execute the task (the contractor). The manager is responsi-
ble for monitoring the execution of a task and processing 
the results of its execution. The contractor is responsible 
for the actual execution of the task. Individual nodes are 
not designated a priori as manager or contractor; these are 
only roles, and any node can take on either role dynami-
cally during the course of problem solving. Nodes are 
therefore not statically tied to a control hierarchy. 

A contract is established by a process of local mutual 
selection based on a two-way transfer of information. In 
brief, the manager for a task advertises the existence of the 
task to other nodes with a task announcement message  
(Fig. 3). Available nodes (potential contractors) evaluate 
task announcements made by several managers (Fig. 4)  
and submit bids on those for which they are suited (Fig. 5). 
An individual manager evaluates the bids and awards 
contracts for execution of the task to the nodes it de-
termines to be most appropriate (Fig. 6). Manager and 
contractor are thus linked by a contract (Fig. 7) and 
communicate privately while the contract is being ex-
ecuted. 

The negotiation process may then recur. A contractor  
may further partition a task and award contracts to other 
nodes. It is then the manager for those contracts. This  
leads to the hierarchical control structure that is typical of 
task-sharing. Control is distributed because processing and 
communication are not focused at particular nodes, but 
rather every node is capable of accepting and assigning 
tasks. This avoids bottlenecks that could degrade perfor-
mance. It also enhances reliability and permits graceful 
degradation of performance in the case of individual node

 
Fig. 5.   Bidding. 

 
Fig. 6.   Making an award. 

 
Fig. 7.   Manager-contractor linkage. 

failures. There are no nodes whose failure can completely 
block the contract negotiation process. 

We have only briefly sketched the negotiation process. 
Several complications arise in its implementation, and a 
number of extensions to the basic method exist that enable 
efficient handling of specialized interactions where the full 
complexity is not required (e.g., when simple requests for 
information are made). See [19] for a full treatment. 

The following is an example of negotiation for a task  
that involves gathering of sensed data and extraction of  
signal features. It is taken from a simulation of a distrib-
uted sensing system (DSS) [17]. The sensing problem is 
partitioned into a number of tasks. We will consider one of 
these tasks, the signal task, that arises during the initializa-
tion phase of DSS operation.6

 
6The DSS in general is an example of a system that uses both  

task-sharing and result-sharing. Task-sharing is used to initialize the system (the 
problem decomposition phase of Fig. 1). 
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The managers for this task are nodes that do not have 
sensing capabilities but do have extensive processing capa-
bilities. They attempt to find a set of sensor nodes to 
provide them with signal features. The sensor nodes, on the 
other hand, have limited processing capabilities and at-
tempt to find managers that can further process the signal 
features they extract from the raw sensed data. 

Recall that we view node interaction as an agreement 
between a node with a task to be performed and a node 
capable of performing that task. Sometimes the perspective 
on the ideal character of that agreement differs depending 
on the point of view of the participant. For example, from 
the perspective of the signal task managers, the best set of 
contractors has an adequate spatial distribution about the 
surrounding area and an adequate distribution of sensor 
types. From the point of view of the potential signal task 
contractors, on the other hand, the best managers are those 
closest to them, in order to minimize potential communica-
tion problems. 

Each message type in the contract net protocol has slots 
for task-specific information. The slots have been chosen to 
capture the types of information that are usefully passed 
between nodes to determine appropriate connections 
without excessive communication. For example, signal task 
announcements include the following slots. 

1) A task abstraction slot is filled with the task type and 
the position of the manager. This enables a potential 
contractor to determine the manager to which it should 
respond. 

2) The eligibility specification slot contents indicate that 
bidders must have sensing capabilities and must be located 
in the same area as the manager. This reduces extraneous 
message traffic and bid processing by explicitly specifying 
the attributes of a contractor that are deemed essential by 
the manager. 

3) The bid specification slot contents indicate that a 
bidder must specify its position and the name and type of 
each of its sensors. This reduces the length of bid messages 
by specifying the information that a manager needs to 
select a suitable set of contractors. 

The potential contractors listen to the task announce-
ments from the various managers. If eligible, they respond 
to the nearest manager with a bid that contains the in-
formation specified in the task announcement. The 
managers use this information to select a set of bidders and 
then award signal contracts. The award messages specify 
the sensors that a contractor must use to provide signal-
feature data to its manager. 

Use of the contract net protocol in a DSS makes it 
possible for the sensor system to be configured dynami-
cally, taking into account such factors as the number of 
sensor and processor nodes available, their locations, and 
the ease with which communication can be established. 

Negotiation offers a more powerful mechanism for con-
nection than is available in current problem-solving sys-
tems. The connection that is effected with the contract net 
protocol is an extension to the pattern-directed invocation 
used in many AI programming languages (see [5] for an 
 

 
Fig. 8.   Result-sharing. 

in-depth discussion). It is most useful when tasks require 
specialized KS’s, when the appropriate KS’s for a given  
task are not known a priori and when the tasks are large 
enough to justify a more substantial transfer of informa- 
tion before invocation than is generally allowed in problem 
solvers. 

VI. RESULT-SHARING 

Result-sharing is a form of cooperation in which individ-
ual nodes assist each other by sharing partial results, based 
on somewhat different perspectives on the overall problem. 
In systems that use result-sharing, control is typically data-
directed; that is, the computation done at any instant by  
an individual node depends on the data that it has availa-
ble, either locally or from remote nodes. An explicit 
hierarchy of task–subtask relationships does not exist be-
tween individual nodes. Result-sharing is shown schemati-
cally in Fig. 8. The individual nodes are represented by 
KS’s. 

A simple example of the use of result-sharing is the 
development of consistent labelings for “blocks world” 
images [20]. A blocks world image is a line drawing that 
shows the edges of a collection of simple objects (e.g., 
cubes, wedges, and pyramids) in a scene. Each image is 
represented as a graph with nodes that correspond to the 
vertices of the objects in the image and arcs that corre-
spond to the edges that connect the vertices. The goal is to 
establish a correspondence between nodes and arcs in the 
graph and actual objects. 

A physically realizable vertex can be given a set of a 
priori possible labels based on the number of lines that  
meet at the vertex and the angles between the lines (e.g., 
“L,” “T,” “ARROW,” and “FORK”) [20]. A vertex is  
further specialized by the character of the lines that com-
pose it (e.g., a line can define a convex boundary between 
surfaces of an object, a boundary between light and shadow, 
and so on). These labelings are established by examining 
the vertices in isolation. Ambiguity arises because generally 
more than one label is possible for each vertex. However, 
the number of possible labels can be reduced (often to a 
single label) by considering the constraints imposed by the 
interactions between vertices that share edges in an object. 
Very few of the large number of combinatorially possible 
vertex types can share an edge in a physically realizable 
object. Thus the key to achieving consistent image labeling 
is to compare the label set of each vertex with those of its 
neighbors and discard inconsistent labels. 

If we partition the problem so that a processor node is 
responsible for one vertex in the image, then the basic 
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Fig. 9.   Sample blocks world problem (from [21]). 

result-sharing process is evident. Nodes communicate their 
local label sets to their neighbors. Each node uses these 
remote label sets together with consistency conditions to 
prune its own label set. It then transmits the new label set 
to its neighbors. The process continues until unique labels 
have been established for all nodes or no further pruning is 
possible. (This process of iterative refinement of label sets 
is called relaxation, constraint propagation, or range restric-
tion.)7

Fig. 9 shows a simple image considered by Waltz. The 
numbers shown in parentheses beside each vertex indicate 
the number of a priori labelings possible for that vertex, in 
the absence of any intervertex constraints.8

In addition to the ambiguity that arises in images from 
the blocks world, real images also suffer from ambiguity 
that arises as a result of noisy data and inaccurate feature 
detectors. The image is again considered to be a graph, but 
in this case the nodes correspond to small regions of the 
image [2], [22]. Examples of labels in this context are line 
segments with specified orientation, or objects (e.g., doors, 
chairs, and wastebaskets). 

As with the blocks world problem, the aim is to establish 
unique labels for each node by considering contextual 
information from adjacent nodes. In this case, no absolute 
constraints are possible. Instead, the constraints (or com-
patibilities as they have also been called) express a degree  
of certainty that the labels associated with neighboring 
nodes are consistent (e.g., a line segment with a particular 
orientation detected at one node has a high degree of 
compatibility with another line segment with the same 
orientation detected at an adjacent node). 

The method is initialized by associating a set of labels  
with each node on the basis of local feature detection. A 
numerical certainty measure is also assigned to each label. 
As before, nodes then communicate their local label sets to 
their neighbors. Instead of pruning its label set, each node 
uses these remote label sets to update the certainty mea-
sures associated with the labels in its own label set. The 
 

7Whereas a high-level protocol has been developed to facilitate task-
sharing [19], no analogous protocol has emerged from research on result-
sharing. We are presently examining the structure of communication for 
result-sharing with a view to extending the contract net protocol to better 
incorporate it. 

8Waltz actually solved this problem using a centralized algorithm that 
considered only one vertex at a time. The algorithm required 80 iterations 
to produce a unique labeling for this image. 

 
Fig. 10.   MSYS: Sample problem. 

 
Fig. 11.   Distributed interpretation: segmentation. 

updating is done on the basis of the interactions among 
labels described above, and strengthens or weakens the 
certainty measure for each label.9 This process continues 
until unique labels have been established for all nodes (i.e., 
one label at each node has a large certainty measure with 
respect to those associated with the other labels for that 
node) or no further updating is possible. 

Fig. 10 shows a sample collection of regions of the type 
considered by MSYS [2]. For each region, possible in-
terpretations and their a priori likelihoods are shown. Also 
shown are the constraints placed on any region that is to  
be interpreted as a “chairseat.” These constraints increase 
the certainty that the collection of regions should be in-
terpreted as a chair. 

Lesser and Erman [14] have experimented with distribu-
tion of the HEARSAY-II speech-understanding system 
[12]. Distribution has been effected by partitioning each 
utterance into segments overlapping in time and assigning 
each segment to a node. Fig. 11 shows the style of segmen-
tation that has been implemented. 

Each node attempts to develop an interpretation for the 
data to which it has access. It does this by creating partial 
interpretations or hypotheses and testing them for plausi-
bility at each stage of the processing. (This is the classic AI 
paradigm of hypothesize and test.) A solution is con-
structed through the incremental aggregation of mutually 
constraining or reinforcing partial solutions while incon-
sistent partial solutions die out. Tentative decisions are 
 

9Examples of updating algorithms are given in [23]. 



68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981 

 

 

made on the basis of partial information and then 
reevaluated when further information becomes available 
(either in the form of more data or in the form of partial 
interpretations received from other nodes). Constraint in  
the speech-understanding domain is offered by the need  
for consistency of interpretation of the overlapping seg-
ments and by the syntactic and semantic constraints that 
one part of an utterance may place on another part. 

The methods used by distributed HEARSAY-II are quite 
similar to those used by the image labeling systems. Succes-
sive refinement of hypotheses is effected in a manner  
similar to the updating of label sets. However, the image 
labeling systems achieve cooperation solely by mutual con-
straint or restriction on the results achieved by individual 
nodes. Distributed HEARSAY-II takes a more general 
approach. It achieves cooperation by both mutual restrict-
tion and by mutual aggregation of results achieved by 
individual nodes (i.e., partial interpretations achieved at 
neighboring nodes are combined to form more complete 
interpretations).10

In initial tests, the result-sharing approach in distributed 
HEARSAY-II has demonstrated an interesting ability to  
deal with ambiguity and uncertainty in data and knowl- 
edge. In a variation on the standard search versus knowl- 
edge trade-off, the result-sharing approach suggests an 
aggregation versus knowledge trade-off: aggregating partial, 
inexact solutions can at times be much easier than attempt-
ing to produce a single, complete and exact solution, and 
may in fact result in almost no loss of accuracy. 

VII. TASK-SHARING AND RESULT-SHARING: A 
COMPARISON 

Task-sharing is used to organize problem decomposition 
through formation of explicit task–subtask connections 
between nodes. The resultant hierarchy is also useful as a 
means of structuring answer synthesis. Task-sharing as-
sumes that kernel subproblems can be solved by individual 
nodes working independently with minimal internode com-
munication and that the major concern is efficient match- 
ing of nodes and tasks for high-speed problem solving. It is 
most useful for problem domains in which it is appropriate  
to define a hierarchy of tasks (e.g., heuristic search) or  
levels of data abstraction (e.g., audio or video signal in-
terpretation). Such problems lend themselves to de-
composition into a set of relatively independent subtasks 

with little need for global information or synchronization. 
Individual subtasks can be assigned to separate processor 
nodes; these nodes can then execute the subtasks with little 
need for communication with other nodes. If this is the 
case, then task-sharing is a sufficiently powerful form of 
cooperation to handle all three phases of distributed prob-
lem solving. 

10Nodes in a result-sharing system are faced with a connection problem 
analogous to that described for task-sharing systems. In the result-sharing 
case, a node must select, from among all results generated, the particular 
results to be transmitted, as well as the other nodes to which they are to  
be transmitted. Similarly, upon receipt of a result, a node must decide 
whether or not to accept it, and what action to take based on the received 
result. Furthermore, we cannot generally assume that a node will com-
municate only with its neighbors. This would preclude the possibility of 
solving problems that involve nonlocal interactions between subproblems 
(e.g., although shadow regions in blocks world images may not be  
adjacent, they must be consistent with respect to their relation to the  
source of illumination). The problem is that we must distinguish between 
physical adjacency in the communication network and causal or informa-
tion-impact adjacency. 

Result-sharing is used to facilitate subproblem solution 
when kernel subproblems are such that they cannot be  
solved by individual nodes working independently without-
significant communication with other nodes. Result-sharing 
offers no mechanism for problem decomposition. Hence it 
can only be used alone as a form of cooperation for  
problems in which problem decomposition and distribu- 
tion of subproblems to individual nodes are handled by an 
agent external to the distributed problem solver. Result-
sharing does offer a minimal mechanism for answer 
synthesis. It is useful in this regard to the extent that the 
same result-sharing mechanism can be used for overall 
answer synthesis as well as subproblem solution.11

Result-sharing is most useful in problem domains in  
which 1) results achieved by one node influence or con-
strain those that can be achieved by another node (i.e., the 
results are relevant to each other), 2) sharing of results  
drives the system to converge to a solution to the problem 
(i.e., results received from remote nodes do not cause 
oscillation), and 3) sharing of results drives the system to a 
correct solution to the problem. 

Minimization of internode communication is important  
for both the task-sharing and result-sharing forms of coop-
eration because of the computation/communication speed 
imbalance in distributed processors. The contract net pro-
tocol uses mechanisms like the eligibility specification slot 
in task announcements to reduce extraneous bid messages, 
while distributed HEARSAY-II uses a range of interesting 
mechanisms to limit the number of hypotheses communi-
cated between nodes. One strategy, for example, is to only 
consider transmission of results for which no further re-
finement or extension is possible through local processing. 
(This type of result has been called “locally complete”  
[14].) 

It has previously been stated [13] that the major ad- 
vantage of result-sharing is its tolerance to uncertainty. 
However, it is interesting to note that task-sharing can also 
be used to achieve tolerance to uncertainty. Consider, for 
example, an application in which three nodes are trying to 
achieve a consistent interpretation of data that is taken  
from overlapping portions of an image. In a result-sharing 
approach they attempt to achieve consensus by communi-
cating partial interpretations of the data. In a task-sharing 
approach, the three nodes each process their own part of 
 

11There still remain the problems of deciding when to terminate prob-
lem solving activity and deciding which node will communicate the  
answer to the customer outside the group. In the distributed HEARSAY-II 
system, all nodes will eventually derive an interpretation for the whole 
utterance. This may be acceptable for a three node system, but will lead to 
an unacceptable amount of communication for a larger system. 
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the data but then, instead of communicating their partial 
interpretations directly to each other, they communicate  
them to a fourth node (a manager in contract net terms)  
that has the task of sorting out the inconsistencies. This  
node periodically retasks the three other nodes, using the 
most current data and partial interpretations.12

This brief example does bring out a major difference 
between the two approaches, namely, that result-sharing is  
a more implicit form of cooperation than task-sharing. 
Cooperation and convergence are achieved by careful de-
sign of individual KS’s so that they can make meaningful  
use of results received from remote KS’s. Task-sharing, on 
the other hand, makes the cooperation explicit by setting  
up formal lines of communication and inserting nodes  
whose specific task is to integrate the partial interpreta- 
tions from the nodes that operate on the actual data. 

The example also illustrates one of the major unsolved 
problems in distributed problem solving — how to achieve 
coherent behavior with a system in which control is distrib-
uted among a number of autonomous nodes. When the 
number of tasks or results that could be processed exceeds 
the number of available nodes, then nodes with tasks or 
results to share must compete for the attention and re- 
sources of the group. 

In the case of task-sharing, mechanisms must be de- 
signed that give some assurance that individual subprob- 
lems are actually processed, that processors do not get in 
each other’s way in trying to solve identical subproblems 
while other subproblems are inadvertently ignored. In ad-
dition, it is very important that the subproblems that 
eventually lead to solutions be processed in preference to 
subproblems that do not lead to solutions. We have sug-
gested negotiation as a mechanism for dealing with these 
difficulties and have designed the contract net protocol  
with them in mind [19]. However, it is apparent that much 
work remains to be done. 

In the case of result-sharing, there must be some as- 
surance that nodes influence each other in such a way as to 
converge to a correct solution. Just as partial results re-
ceived from a remote node can suggest fruitful new lines of 
attack for a problem, they can also be distracting. In recent 
work on result-sharing systems, it has been seen that 
certainty measures generated at different nodes can be 
particularly difficult to integrate. In distributed  
HEARSAY-II, for example, it was found that certainty 
measures used in a centralized approach are not necessarily 
appropriate for a distributed formulation. The effect was  
that remotely generated results sometimes caused nodes to 
pursue lines of attack that were not as fruitful as the ones 
they had been pursuing before receipt of those results.  
Some evidence of this phenomenon can be inferred from  
the experiments that were performed in which some results 
 

12In organization theoretic terms, the fourth nodes carries out an 
“integrating role.” Hierarchical control of this type is a standard mecha-
nism used by human organizations to deal with uncertainty [9], [8]. In the 
contract net approach, the managers for tasks are in the best position to 
perform such duties. 

were lost in transmission. In some cases, system perfor-
mance actually improved, an indication that nodes some-
times distract their neighbors. Once again, much work 
remains to be done in this area. 

VIII. CONCLUSION 
Two complementary forms of cooperation in distributed 

problem solving have been discussed: task-sharing and 
result-sharing. These forms are useful for different types of 
problem and for different phases of distributed problem 
solving. Task-sharing is useful in the problem decomposi-
tion and answer synthesis phases of distributed problem 
solving. It assumes that subproblem solution can be  
achieved with minimal communication between nodes. Re-
sult-sharing is useful in the subproblem solution phase  
when kernel subproblems cannot be solved by nodes work-
ing independently without communication with other  
nodes. It is also helpful to some extent in the answer 
synthesis phase — in particular, for problems in which the 
answer synthesis phase is essentially a continuation of the 
subproblem solution phase. We eventually expect to see 
systems in which both forms of cooperation are used, 
drawing upon their individual strengths to attack problems  
or which neither form is sufficiently powerful by itself. 
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