
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981 61

Frameworks for Cooperation in Distributed
Problem Solving

REID G. S M I T H , MEMBER, IEEE, AND RANDALL DAVIS

Abstract — Two forms of cooperation in distributed problem solving are

considered: task-sharing and result-sharing. In the former, nodes assist each
other by sharing the computational load for the execution of subtasks of
the overall problem. In the latter, nodes assist each other by sharing partial
results which are based on somewhat different perspectives on the overall
problem. Different perspectives arise because the nodes use different
knowledge sources (KS’s) (e.g., syntax versus acoustics in the case of a
speech-understanding system) or different data (e.g., data that is sensed at
different locations in the case of a distributed sensing system). Particular
attention is given to control and to internode communication for the two
forms of cooperation. For each, the basic methodology is presented and
systems in which it has been used are described. The two forms are then
compared and the types of applications for which they are suitable are
considered.

I. DISTRIBUTED PROBLEM SOLVING
ISTRIBUTED problem solving is the cooperative
solution of problems by a decentralized and loosely

coupled collection of knowledge sources (KS’s) (proce-
dures, sets of rules, etc.), located in a number of distinct
processor nodes. The KS’s cooperate in the sense that no
one of them has sufficient information to solve the entire
problem; mutual sharing of information is necessary to
allow the group as a whole to produce an answer. By
decentralized we mean that both control and data are
logically and often geographically distributed; there is
neither global control nor global data storage. Loosely
coupled means that individual KS’s spend the great per-
centage of their time in computation rather than communi-
cation.

Distributed problem solvers offer advantages of speed,
reliability, extensibility, the ability to handle applications
with a natural spatial distribution, and the ability to tolerate
uncertain data and knowledge. Because such systems are
highly modular they also offer conceptual clarity and sim-
plicity of design.

Although much work has been done in distributed
processing, most of the applications have not addressed
issues that are important for the design of artificial intelli-
gence (AI) problem solvers. For example, the bulk of the

Manuscript received January 28, 1980, revised September 1, 1980. This
work was supported by the Department of National Defence of Canada,
Research and Development Branch, and by the Advanced Research
Projects Agency of the United States Department of Defense under Office
of Naval Research Contract N00014-75-C-0643.

R. G. Smith is with the Defence Research Establishment Atlantic,
Dartmouth, NS, Canada, B2Y 3Z7.

R. Davis is with the Artificial Intelligence Laboratory, Massachusetts
Institute Of Technology, Cambridge, MA 02139.

processing is usually done at a central site with remote
processors limited to basic data collection (e.g., credit card
verification). While it is common to distribute data and
processing, it is not common to distribute control, and the
processors do not cooperate in a substantive manner.

Researchers in the area of distributed processing have
not taken problem solving as their primary focus. It has
generally been assumed, for example, that a well-defined
and a priori partitioned problem exists and that the major
concerns lie in an optimal static distribution of tasks,
methods for interconnecting processor nodes, resource al-
location, and prevention of deadlock. Complete knowledge
of timing and precedence relations between tasks has gen-
erally been assumed, and the major reason for distribution
has been taken to be load balancing (see for example [1],
[3]). Distributed problem solving, on the other hand, in-
cludes as part of its basic task the partitioning of a
problem.

Perhaps the most important distinction between dis-
tributed problem solving and distributed processing sys-
tems can be found by examining the origin of the systems
and the motivations for interconnecting machines. Dis-
tributed processing systems often have their origin in an
attempt to synthesize a network of machines capable of
carrying out a number of widely disparate tasks. Typically,
several distinct applications are envisioned, with each ap-
plication concentrated at a single node (as for example in a
three-node system intended to do payroll, order entry, and
process control). The aim is to find a way to reconcile any
conflicts and disadvantages arising from the desire to carry
out disparate tasks, in order to gain the benefits of using
multiple machines (sharing of data bases, graceful degrada-
tion, etc.). Unfortunately, the conflicts that arise are often
not simply technical (e.g., word sizes and data base for-
mats) but include sociological and political problems as
well [6]. The attempt to synthesize a number of disparate
tasks leads to a concern with issues such as access control
and protection, and results in viewing cooperation as a
form of compromise between potentially conflicting per-
spectives and desires at the level of system design and
configuration.

In distributed problem solving, on the other hand, a
single task is envisioned for the system, and the resources
to be applied have no other predefined roles to carry out.
A system is constructed de novo, and as a result the
hardware and software can be chosen with one aim in

D

0018-9472/81/0100-0061$00.75 ©1981 IEEE

http://www.rgsmithassociates.com/About.htm

62 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981

mind: the selection that leads to the most effective environ-
ment for cooperative behavior. This also means that coop-
eration is viewed in terms of benevolent problem-solving
behavior; that is, how can systems that are perfectly willing
to accommodate one another act so as to be an effective
team? Our concerns are thus with developing frameworks
for cooperative behavior between willing entities, rather than
frameworks for enforcing cooperation as a form of com-
promise between potentially incompatible entities.

This leads us to investigate the structure of interactions
between cooperating nodes. We are primarily concerned
with the content of the information to be communicated
between nodes and the use of the information by a node
for cooperative problem solving. We are less concerned
with the specific form in which the communication is
effected.

In this paper two forms of cooperation in distributed
problem solving are considered: task-sharing and result-
sharing. In the former, nodes assist each other by sharing
the computational load for the execution of subtasks of the
overall problem. In the latter, nodes assist each other by
sharing partial results which are based on somewhat differ-
ent perspectives on the overall problem. Different perspec-
tives arise because the nodes use different KS’s (e.g., syntax
versus acoustics in the case of a speech-understanding
system) or different data (e.g., data that is sensed at
different locations in the case of a distributed sensing
system).

For each form, the basic methodology is presented, and
systems in which it has been used are described. The utility
of the two forms is examined, and their complementary
nature is discussed.

The physical architecture of the problem solver is not of
primary interest here. It is assumed to be a network of
loosely coupled, asynchronous nodes. Each node contains a
number of distinct KS’s. The nodes are interconnected so
that each node can communicate with every other node by
sending messages. No memory is shared by the nodes.

II. COOPERATING EXPERTS
A familiar metaphor for a problem solver operating in a

distributed processor is a group of human experts experi-
enced at working together, trying to complete a large task.
This metaphor has been used in several AI systems [10]-
[12], [18]. Of primary interest to us in examining the
operation of a group of human experts is the way in which
they interact to solve the overall problem, the manner in
which the workload is distributed among them, and how
results are integrated for communication outside the group.

It is assumed that no one expert is in total control of the
others, although one expert may be ultimately responsible
for communicating the solution of the top-level problem to
the customer outside the group. In such a situation each
expert may spend most of his time working alone on
various subtasks that have been partitioned from the main
task, pausing occasionally to interact with other members
of the group. These interactions generally involve requests
for assistance on subtasks or the exchange of results.

Individual experts can assist each other in at least two
ways. First, they can divide the workload among them-
selves, and each node can independently solve some sub-
problems of the overall problem. We call this task-sharing
(as in [11] and [18]). In this mode of cooperation, we are
primarily concerned with the way in which experts decide
who will perform which task. We postulate that one inter-
esting method of effecting this agreement is via negotia-
tion.

An expert (El) may request assistance because he en-
counters a task too large to handle alone, or a task for
which he has no expertise. If the task is too large, he will
first partition it into manageable subtasks, and then at-
tempt to find other experts who have the appropriate skills
to handle the new tasks. If the original task is beyond his
expertise, he immediately attempts to find another more
appropriate expert to handle it.

In either case, if E1 knows which other experts have the
necessary expertise, he can notify them directly. If he does
not know anyone in particular who may be able to assist
him (or if the task requires no special expertise), then he
can simply describe the task to the entire group.

If another expert (E2) believes he is capable of carrying
out the task that E1 described, he informs E1 of his
availability and perhaps indicates any especially relevant
skills he may have. E1 may discover several such volunteers
and can choose from among them. The chosen volunteer
then requests additional details from El, and the two
engage in further direct communication for the duration of
the task.

Those with tasks to be executed and those capable of
executing the tasks thus engage each other in a simple form
of negotiation to distribute the workload. They form sub-
groups dynamically as they progress towards a solution.1

When subproblems cannot be solved by independent
experts working alone, a second form of cooperation is
appropriate. In this form, the experts periodically report to
each other the partial results they have obtained during
execution of individual tasks. We call this result-sharing
(as, for example, in [12] and [13]). It is assumed in this
mode of cooperation that problem partitioning has been
effected a priori and that individual experts work on sub-
problems that have some degree of commonality (e.g.,
interpreting data from overlapping portions of an image).
An expert (El) reports a partial result for his subprob-
lem to his neighbors (E2 and E3) when that result may
have some bearing on the processing being done by them.
(For example, a partial result may be the best result that
E1 can derive using only the data and knowledge available
to him.) E2 and E3 attempt l) to use El’s result to confirm
or deny competing results for their subproblems, or 2) to

1Subgroups offer two advantages. First, communication among the
members does not needlessly distract the entire group. This is important
because communication itself can be a major source of distraction and
difficulty in large groups (see, for example, [91). Thus one of the major
purposes of organization is to reduce the amount of communication that
is needed. Second, the subgroup members may be able to communicate
with each other in a language that is more efficient for their purpose than
the language in use by the entire group.

DAVIS AND SMITH: FRAMEWORKS IN DISTRIBUTED PROBLEM SOLVING 63

Fig. 1. Phases of distributed problem solving.

aggregate partial results of their own with El’s result to
produce a result that is relevant to El’s subproblem as well
as their own, or 3) to use El’s result to indicate alternative
lines of attack that they might take to solve their own
subproblems.

III. A PERSPECTIVE ON DISTRIBUTED PROBLEM
SOLVING

In this section we present a model for the phases that a
distributed problem solver passes through as it solves a
problem (Fig. 1). The model offers a framework in which
to anchor the two forms of cooperation that are the primary
focus of this paper. It enables us to see the utility of the
two forms, the types of problems for which they are best
suited, and the way in which they are complementary.2

In the first phase, the problem is decomposed into
subproblems. As Fig. 1 shows, the decomposition process
may involve a hierarchy of partitionings. In addition, the
process may itself be distributed in order to avoid bot-
tlenecks. Decomposition proceeds until kernel (nondecom-
posable) subproblems are generated. Consider as an
example a simple distributed sensing system (DSS). In the
problem decomposition phase, the subproblems of detect-
ing objects in specific portions of the overall area of
interest are defined and distributed among the available
sensors.

The second phase involves solution of the kernel sub-
problems. As shown in the figure, this may necessitate
communication and cooperation among the nodes attempt-
ing to solve the individual subproblems. In the DSS exam-
ple, communication is required in the subproblem solution
phase 1) if objects can move from one area to another so
that it is helpful for sensors to inform their neighbors of
the movement of objects they have detected, or 2) if it is
difficult for a single sensor to reliably detect objects without
assistance from other sensors.

Answer synthesis is performed in the third phase; that is,
integration of subproblem results to achieve a solution to
the overall problem. Like problem decomposition, answer
synthesis may be hierarchical and distributed. In the DSS

example, the answer synthesis phase involves generation of
a map of the objects in the overall area of interest.

 2It will be apparent that the model is also applicable to centralized

problem solving. The distinct phases, however, are more obvious in a
distributed problem solver, primarily because communication and cooper-
ation must be dealt with explicitly in this case.

For any given problem, the three phases may vary in
complexity and importance. Some phases may either be
missing or trivial. For example, in the traffic-light control
problem considered in [13], the problem decomposition
phase involves no computation. Traffic-light controllers are
simply placed at each intersection. For a DSS, the problem
decomposition is suggested directly by the spatial distribu-
tion of the problem.3

There is also no answer synthesis phase for traffic-light
control. The solution to a kernel subproblem is a smooth
flow of traffic through the associated intersection. There is
no need to synthesize an overall map of the traffic. Thus
the solution to the overall problem is the solution to the
kernel subproblems. (This is generally true of control prob-
lems; note that it does not mean, however, that communi-
cation among the nodes solving individual subproblems is
not required.)

Many search problems (like symbolic integration [16])
also involve a minimal answer synthesis phase. Once the
problem has been decomposed into kernel subproblems
and they have been solved, the only answer synthesis
required is recapitulation of the list of steps that have been
followed to obtain the solution. However, for some prob-
lems the answer synthesis phase is the dominant phase. An
example is the CONGEN program [4]. CONGEN is used
in molecular structure elucidation. It generates all struct-
ural isomers that are both consistent with a given chemical
formula and that include structural fragments known to be
present in the substance (superatoms). In the problem
decomposition phase, CONGEN generates all structures
that are consistent with the data (by first generating inter-
mediate structures, then decomposing those structures, and
so on until only structures that contain atoms or super-
atoms remain). At this point, the superatoms (like the
atoms) are considered by name and valence only. In the
answer synthesis phase, the superatoms are replaced by the
actual structural fragments they represent and are em-
bedded in the generated structures. Because embedding can
often be done in many ways, a sizable portion of the
overall computation is accounted for by this phase.

IV. CAVEATS FOR COOPERATION
One of the main aims in adopting a distributed approach

is to achieve high-speed problem solving. In order to do
this, situations in which processors “get in each other’s
way” must be avoided. This obviously depends on the
problem itself (e.g., there are problems for which data or
computation cannot be partitioned into enough mostly
independent pieces to occupy all of the processors). Perfor-
mance also depends, however, on the problem-solving archi-
tecture. It is therefore appropriate to consider frameworks
for cooperation.

3Note that the problem solver must still implement even an obvious
decomposition. Nodes must still come to an agreement as to which node
is to handle which portion of the overall area.

64 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981

It is common in AI problem solvers to partition exper-
tise into domain-specific KS’s, each of which is expert in a
particular part of the overall problem. KS’s are typically
formed empirically, based on examination of different
types of knowledge that can be brought to bear on a
particular problem. In a speech-understanding problem,
for example, knowledge is available from the speech signal
itself, from the syntax of the utterances, and from the
semantics of the task domain [7]. The decisions about
which KS’s are to be formed is often made in concert with
the formation of a hierarchy of levels of data abstraction
for a problem. For example, the levels used in the hierarchy
of the HEARSAY-II speech-understanding system were
parametric, segmental, phonetic, surface-phonemic, syl-
labic, lexical, phrasal, and conceptual [7]. KS’s are typically
chosen to handle data at one level of abstraction or to
bridge two levels (see, for example, [7] and [15]).

Interactions among the KS’s in a distributed processor
are more expensive than in a uniprocessor because com-
munication in a distributed architecture is generally much
slower than computation. The framework for cooperation
must therefore minimize communication among processors.
Otherwise, the available communication channels may be
saturated so that nodes are forced to remain idle while
messages are transmitted.4

As a simple example of the difficulty that excessive
communication can cause, consider a distributed processor
with 100 nodes that are interconnected with a single broad-
cast communication channel. Assume that each of the
nodes operates at 108 instructions per second; the compu-
tation and communication load is shared equally by all
nodes, and the problem-solving architecture is such that
one bit must be communicated by each node for every ten
instructions that it executes. With these parameters it is
readily shown that the communications channel must have
a bandwidth of at least 1 Gbit/s (even ignoring the effect
of contention for the channel) [18]. With a smaller band-
width, processors are forced to stand idle waiting for
messages.

There are, of course, many architectures that do not lead
to channel bandwidths of the same magnitude. However,
the point remains that special attention must be paid to
internode communication and control in distributed prob-
lem solving if large numbers of fast processors are to be
connected.

The framework for cooperation must also distribute the.
processing load among the nodes in order to avoid compu-
tation and communication bottlenecks. Otherwise, overall
performance may be limited by concentration of dispro-
portionate amounts of computation or communication at a
small number of processors. It is also the case that the
control of processing must itself be distributed. Otherwise,
requests for decisions about what to do next could in time

4The focus here is on speed but the other reasons for adopting a
distributed approach are also relevant — for example, reliability (i.e., the
capability to recover from the failure of individual components, with
graceful degradation in performance) and extensibility (i.e., the capability
to alter the number of processors applied to a problem).

Fig. 2. Task-sharing.

accumulate at a “controller” node faster than they could be
processed.5 Distribution of control does, however, lead to
difficulties in achieving globally coherent behavior since
control decisions are made by individual nodes without the
benefit of an overall view of the problem. We will illustrate
this problem in Section VII.

V. TASK-SHARING
Task-sharing is a form of cooperation in which individ-

ual nodes assist each other by sharing the computational
load for the execution of subtasks of the overall problem.
Control in systems that use task-sharing is typically goal-
directed; that is, the processing done by individual nodes is
directed to achieve subgoals whose results can be in-
tegrated to solve the overall problem.

Task-sharing is shown schematically in Fig. 2. The indi-
vidual nodes are represented by the tasks in whose execu-
tion they are engaged.

The key issue to be resolved in task-sharing is how tasks
are to be distributed among the processor nodes. There
must be a means whereby nodes with tasks to be executed
can find the most appropriate idle nodes to execute those
tasks. We call this the connection problem. Solving the
connection problem is crucial to maintaining the focus of
the problem solver. This is especially true in AI applica-
tions because they do not generally have well-defined
algorithms for their solution. The most appropriate KS to
invoke for the execution of any given task generally cannot
be identified a priori, and there are usually far too many
possibilities to try all of them.

In the remainder of this section, we consider negotiation
as a mechanism that can be used to structure node interac-
tions and solve the connection problem in task-shared
systems. Negotiation is suggested by the observation that
the connection problem can also be viewed from the per-
spective of an idle node. It must find another node with an
appropriate task that is available for execution. In order to
maximize system concurrency, both nodes with tasks to be
executed and nodes ready to execute tasks can proceed
simultaneously, engaging each other in a process that re-
sembles contract negotiation to solve the connection prob-
lem.

In the contract net approach to negotiation [18], [19], a
contract is an explicit agreement between a node that

5Such a node would also be a hazard to reliability since its failure
would result in total failure of the system.

DAVIS AND SMITH: FRAMEWORKS IN DISTRIBUTED PROBLEM SOLVING 65

Fig. 3. Sending a task announcement.

Fig. 4. Receiving task announcements.

generates a task (the manager) and a node willing to
execute the task (the contractor). The manager is responsi-
ble for monitoring the execution of a task and processing
the results of its execution. The contractor is responsible
for the actual execution of the task. Individual nodes are
not designated a priori as manager or contractor; these are
only roles, and any node can take on either role dynami-
cally during the course of problem solving. Nodes are
therefore not statically tied to a control hierarchy.

A contract is established by a process of local mutual
selection based on a two-way transfer of information. In
brief, the manager for a task advertises the existence of the
task to other nodes with a task announcement message
(Fig. 3). Available nodes (potential contractors) evaluate
task announcements made by several managers (Fig. 4)
and submit bids on those for which they are suited (Fig. 5).
An individual manager evaluates the bids and awards
contracts for execution of the task to the nodes it de-
termines to be most appropriate (Fig. 6). Manager and
contractor are thus linked by a contract (Fig. 7) and
communicate privately while the contract is being ex-
ecuted.

The negotiation process may then recur. A contractor
may further partition a task and award contracts to other
nodes. It is then the manager for those contracts. This
leads to the hierarchical control structure that is typical of
task-sharing. Control is distributed because processing and
communication are not focused at particular nodes, but
rather every node is capable of accepting and assigning
tasks. This avoids bottlenecks that could degrade perfor-
mance. It also enhances reliability and permits graceful
degradation of performance in the case of individual node

Fig. 5. Bidding.

Fig. 6. Making an award.

Fig. 7. Manager-contractor linkage.

failures. There are no nodes whose failure can completely
block the contract negotiation process.

We have only briefly sketched the negotiation process.
Several complications arise in its implementation, and a
number of extensions to the basic method exist that enable
efficient handling of specialized interactions where the full
complexity is not required (e.g., when simple requests for
information are made). See [19] for a full treatment.

The following is an example of negotiation for a task
that involves gathering of sensed data and extraction of
signal features. It is taken from a simulation of a distrib-
uted sensing system (DSS) [17]. The sensing problem is
partitioned into a number of tasks. We will consider one of
these tasks, the signal task, that arises during the initializa-
tion phase of DSS operation.6

6The DSS in general is an example of a system that uses both

task-sharing and result-sharing. Task-sharing is used to initialize the system (the
problem decomposition phase of Fig. 1).

66 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981

The managers for this task are nodes that do not have
sensing capabilities but do have extensive processing capa-
bilities. They attempt to find a set of sensor nodes to
provide them with signal features. The sensor nodes, on the
other hand, have limited processing capabilities and at-
tempt to find managers that can further process the signal
features they extract from the raw sensed data.

Recall that we view node interaction as an agreement
between a node with a task to be performed and a node
capable of performing that task. Sometimes the perspective
on the ideal character of that agreement differs depending
on the point of view of the participant. For example, from
the perspective of the signal task managers, the best set of
contractors has an adequate spatial distribution about the
surrounding area and an adequate distribution of sensor
types. From the point of view of the potential signal task
contractors, on the other hand, the best managers are those
closest to them, in order to minimize potential communica-
tion problems.

Each message type in the contract net protocol has slots
for task-specific information. The slots have been chosen to
capture the types of information that are usefully passed
between nodes to determine appropriate connections
without excessive communication. For example, signal task
announcements include the following slots.

1) A task abstraction slot is filled with the task type and
the position of the manager. This enables a potential
contractor to determine the manager to which it should
respond.

2) The eligibility specification slot contents indicate that
bidders must have sensing capabilities and must be located
in the same area as the manager. This reduces extraneous
message traffic and bid processing by explicitly specifying
the attributes of a contractor that are deemed essential by
the manager.

3) The bid specification slot contents indicate that a
bidder must specify its position and the name and type of
each of its sensors. This reduces the length of bid messages
by specifying the information that a manager needs to
select a suitable set of contractors.

The potential contractors listen to the task announce-
ments from the various managers. If eligible, they respond
to the nearest manager with a bid that contains the in-
formation specified in the task announcement. The
managers use this information to select a set of bidders and
then award signal contracts. The award messages specify
the sensors that a contractor must use to provide signal-
feature data to its manager.

Use of the contract net protocol in a DSS makes it
possible for the sensor system to be configured dynami-
cally, taking into account such factors as the number of
sensor and processor nodes available, their locations, and
the ease with which communication can be established.

Negotiation offers a more powerful mechanism for con-
nection than is available in current problem-solving sys-
tems. The connection that is effected with the contract net
protocol is an extension to the pattern-directed invocation
used in many AI programming languages (see [5] for an

Fig. 8. Result-sharing.

in-depth discussion). It is most useful when tasks require
specialized KS’s, when the appropriate KS’s for a given
task are not known a priori and when the tasks are large
enough to justify a more substantial transfer of informa-
tion before invocation than is generally allowed in problem
solvers.

VI. RESULT-SHARING

Result-sharing is a form of cooperation in which individ-
ual nodes assist each other by sharing partial results, based
on somewhat different perspectives on the overall problem.
In systems that use result-sharing, control is typically data-
directed; that is, the computation done at any instant by
an individual node depends on the data that it has availa-
ble, either locally or from remote nodes. An explicit
hierarchy of task–subtask relationships does not exist be-
tween individual nodes. Result-sharing is shown schemati-
cally in Fig. 8. The individual nodes are represented by
KS’s.

A simple example of the use of result-sharing is the
development of consistent labelings for “blocks world”
images [20]. A blocks world image is a line drawing that
shows the edges of a collection of simple objects (e.g.,
cubes, wedges, and pyramids) in a scene. Each image is
represented as a graph with nodes that correspond to the
vertices of the objects in the image and arcs that corre-
spond to the edges that connect the vertices. The goal is to
establish a correspondence between nodes and arcs in the
graph and actual objects.

A physically realizable vertex can be given a set of a
priori possible labels based on the number of lines that
meet at the vertex and the angles between the lines (e.g.,
“L,” “T,” “ARROW,” and “FORK”) [20]. A vertex is
further specialized by the character of the lines that com-
pose it (e.g., a line can define a convex boundary between
surfaces of an object, a boundary between light and shadow,
and so on). These labelings are established by examining
the vertices in isolation. Ambiguity arises because generally
more than one label is possible for each vertex. However,
the number of possible labels can be reduced (often to a
single label) by considering the constraints imposed by the
interactions between vertices that share edges in an object.
Very few of the large number of combinatorially possible
vertex types can share an edge in a physically realizable
object. Thus the key to achieving consistent image labeling
is to compare the label set of each vertex with those of its
neighbors and discard inconsistent labels.

If we partition the problem so that a processor node is
responsible for one vertex in the image, then the basic

DAVIS AND SMITH: FRAMEWORKS IN DISTRIBUTED PROBLEM SOLVING 67

Fig. 9. Sample blocks world problem (from [21]).

result-sharing process is evident. Nodes communicate their
local label sets to their neighbors. Each node uses these
remote label sets together with consistency conditions to
prune its own label set. It then transmits the new label set
to its neighbors. The process continues until unique labels
have been established for all nodes or no further pruning is
possible. (This process of iterative refinement of label sets
is called relaxation, constraint propagation, or range restric-
tion.)7

Fig. 9 shows a simple image considered by Waltz. The
numbers shown in parentheses beside each vertex indicate
the number of a priori labelings possible for that vertex, in
the absence of any intervertex constraints.8

In addition to the ambiguity that arises in images from
the blocks world, real images also suffer from ambiguity
that arises as a result of noisy data and inaccurate feature
detectors. The image is again considered to be a graph, but
in this case the nodes correspond to small regions of the
image [2], [22]. Examples of labels in this context are line
segments with specified orientation, or objects (e.g., doors,
chairs, and wastebaskets).

As with the blocks world problem, the aim is to establish
unique labels for each node by considering contextual
information from adjacent nodes. In this case, no absolute
constraints are possible. Instead, the constraints (or com-
patibilities as they have also been called) express a degree
of certainty that the labels associated with neighboring
nodes are consistent (e.g., a line segment with a particular
orientation detected at one node has a high degree of
compatibility with another line segment with the same
orientation detected at an adjacent node).

The method is initialized by associating a set of labels
with each node on the basis of local feature detection. A
numerical certainty measure is also assigned to each label.
As before, nodes then communicate their local label sets to
their neighbors. Instead of pruning its label set, each node
uses these remote label sets to update the certainty mea-
sures associated with the labels in its own label set. The

7Whereas a high-level protocol has been developed to facilitate task-
sharing [19], no analogous protocol has emerged from research on result-
sharing. We are presently examining the structure of communication for
result-sharing with a view to extending the contract net protocol to better
incorporate it.

8Waltz actually solved this problem using a centralized algorithm that
considered only one vertex at a time. The algorithm required 80 iterations
to produce a unique labeling for this image.

Fig. 10. MSYS: Sample problem.

Fig. 11. Distributed interpretation: segmentation.

updating is done on the basis of the interactions among
labels described above, and strengthens or weakens the
certainty measure for each label.9 This process continues
until unique labels have been established for all nodes (i.e.,
one label at each node has a large certainty measure with
respect to those associated with the other labels for that
node) or no further updating is possible.

Fig. 10 shows a sample collection of regions of the type
considered by MSYS [2]. For each region, possible in-
terpretations and their a priori likelihoods are shown. Also
shown are the constraints placed on any region that is to
be interpreted as a “chairseat.” These constraints increase
the certainty that the collection of regions should be in-
terpreted as a chair.

Lesser and Erman [14] have experimented with distribu-
tion of the HEARSAY-II speech-understanding system
[12]. Distribution has been effected by partitioning each
utterance into segments overlapping in time and assigning
each segment to a node. Fig. 11 shows the style of segmen-
tation that has been implemented.

Each node attempts to develop an interpretation for the
data to which it has access. It does this by creating partial
interpretations or hypotheses and testing them for plausi-
bility at each stage of the processing. (This is the classic AI
paradigm of hypothesize and test.) A solution is con-
structed through the incremental aggregation of mutually
constraining or reinforcing partial solutions while incon-
sistent partial solutions die out. Tentative decisions are

9Examples of updating algorithms are given in [23].

68 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981

made on the basis of partial information and then
reevaluated when further information becomes available
(either in the form of more data or in the form of partial
interpretations received from other nodes). Constraint in
the speech-understanding domain is offered by the need
for consistency of interpretation of the overlapping seg-
ments and by the syntactic and semantic constraints that
one part of an utterance may place on another part.

The methods used by distributed HEARSAY-II are quite
similar to those used by the image labeling systems. Succes-
sive refinement of hypotheses is effected in a manner
similar to the updating of label sets. However, the image
labeling systems achieve cooperation solely by mutual con-
straint or restriction on the results achieved by individual
nodes. Distributed HEARSAY-II takes a more general
approach. It achieves cooperation by both mutual restrict-
tion and by mutual aggregation of results achieved by
individual nodes (i.e., partial interpretations achieved at
neighboring nodes are combined to form more complete
interpretations).10

In initial tests, the result-sharing approach in distributed
HEARSAY-II has demonstrated an interesting ability to
deal with ambiguity and uncertainty in data and knowl-
edge. In a variation on the standard search versus knowl-
edge trade-off, the result-sharing approach suggests an
aggregation versus knowledge trade-off: aggregating partial,
inexact solutions can at times be much easier than attempt-
ing to produce a single, complete and exact solution, and
may in fact result in almost no loss of accuracy.

VII. TASK-SHARING AND RESULT-SHARING: A
COMPARISON

Task-sharing is used to organize problem decomposition
through formation of explicit task–subtask connections
between nodes. The resultant hierarchy is also useful as a
means of structuring answer synthesis. Task-sharing as-
sumes that kernel subproblems can be solved by individual
nodes working independently with minimal internode com-
munication and that the major concern is efficient match-
ing of nodes and tasks for high-speed problem solving. It is
most useful for problem domains in which it is appropriate
to define a hierarchy of tasks (e.g., heuristic search) or
levels of data abstraction (e.g., audio or video signal in-
terpretation). Such problems lend themselves to de-
composition into a set of relatively independent subtasks

with little need for global information or synchronization.
Individual subtasks can be assigned to separate processor
nodes; these nodes can then execute the subtasks with little
need for communication with other nodes. If this is the
case, then task-sharing is a sufficiently powerful form of
cooperation to handle all three phases of distributed prob-
lem solving.

10Nodes in a result-sharing system are faced with a connection problem
analogous to that described for task-sharing systems. In the result-sharing
case, a node must select, from among all results generated, the particular
results to be transmitted, as well as the other nodes to which they are to
be transmitted. Similarly, upon receipt of a result, a node must decide
whether or not to accept it, and what action to take based on the received
result. Furthermore, we cannot generally assume that a node will com-
municate only with its neighbors. This would preclude the possibility of
solving problems that involve nonlocal interactions between subproblems
(e.g., although shadow regions in blocks world images may not be
adjacent, they must be consistent with respect to their relation to the
source of illumination). The problem is that we must distinguish between
physical adjacency in the communication network and causal or informa-
tion-impact adjacency.

Result-sharing is used to facilitate subproblem solution
when kernel subproblems are such that they cannot be
solved by individual nodes working independently without-
significant communication with other nodes. Result-sharing
offers no mechanism for problem decomposition. Hence it
can only be used alone as a form of cooperation for
problems in which problem decomposition and distribu-
tion of subproblems to individual nodes are handled by an
agent external to the distributed problem solver. Result-
sharing does offer a minimal mechanism for answer
synthesis. It is useful in this regard to the extent that the
same result-sharing mechanism can be used for overall
answer synthesis as well as subproblem solution.11

Result-sharing is most useful in problem domains in
which 1) results achieved by one node influence or con-
strain those that can be achieved by another node (i.e., the
results are relevant to each other), 2) sharing of results
drives the system to converge to a solution to the problem
(i.e., results received from remote nodes do not cause
oscillation), and 3) sharing of results drives the system to a
correct solution to the problem.

Minimization of internode communication is important
for both the task-sharing and result-sharing forms of coop-
eration because of the computation/communication speed
imbalance in distributed processors. The contract net pro-
tocol uses mechanisms like the eligibility specification slot
in task announcements to reduce extraneous bid messages,
while distributed HEARSAY-II uses a range of interesting
mechanisms to limit the number of hypotheses communi-
cated between nodes. One strategy, for example, is to only
consider transmission of results for which no further re-
finement or extension is possible through local processing.
(This type of result has been called “locally complete”
[14].)

It has previously been stated [13] that the major ad-
vantage of result-sharing is its tolerance to uncertainty.
However, it is interesting to note that task-sharing can also
be used to achieve tolerance to uncertainty. Consider, for
example, an application in which three nodes are trying to
achieve a consistent interpretation of data that is taken
from overlapping portions of an image. In a result-sharing
approach they attempt to achieve consensus by communi-
cating partial interpretations of the data. In a task-sharing
approach, the three nodes each process their own part of

11There still remain the problems of deciding when to terminate prob-
lem solving activity and deciding which node will communicate the
answer to the customer outside the group. In the distributed HEARSAY-II
system, all nodes will eventually derive an interpretation for the whole
utterance. This may be acceptable for a three node system, but will lead to
an unacceptable amount of communication for a larger system.

DAVIS AND SMITH: FRAMEWORKS IN DISTRIBUTED PROBLEM SOLVING 69

the data but then, instead of communicating their partial
interpretations directly to each other, they communicate
them to a fourth node (a manager in contract net terms)
that has the task of sorting out the inconsistencies. This
node periodically retasks the three other nodes, using the
most current data and partial interpretations.12

This brief example does bring out a major difference
between the two approaches, namely, that result-sharing is
a more implicit form of cooperation than task-sharing.
Cooperation and convergence are achieved by careful de-
sign of individual KS’s so that they can make meaningful
use of results received from remote KS’s. Task-sharing, on
the other hand, makes the cooperation explicit by setting
up formal lines of communication and inserting nodes
whose specific task is to integrate the partial interpreta-
tions from the nodes that operate on the actual data.

The example also illustrates one of the major unsolved
problems in distributed problem solving — how to achieve
coherent behavior with a system in which control is distrib-
uted among a number of autonomous nodes. When the
number of tasks or results that could be processed exceeds
the number of available nodes, then nodes with tasks or
results to share must compete for the attention and re-
sources of the group.

In the case of task-sharing, mechanisms must be de-
signed that give some assurance that individual subprob-
lems are actually processed, that processors do not get in
each other’s way in trying to solve identical subproblems
while other subproblems are inadvertently ignored. In ad-
dition, it is very important that the subproblems that
eventually lead to solutions be processed in preference to
subproblems that do not lead to solutions. We have sug-
gested negotiation as a mechanism for dealing with these
difficulties and have designed the contract net protocol
with them in mind [19]. However, it is apparent that much
work remains to be done.

In the case of result-sharing, there must be some as-
surance that nodes influence each other in such a way as to
converge to a correct solution. Just as partial results re-
ceived from a remote node can suggest fruitful new lines of
attack for a problem, they can also be distracting. In recent
work on result-sharing systems, it has been seen that
certainty measures generated at different nodes can be
particularly difficult to integrate. In distributed
HEARSAY-II, for example, it was found that certainty
measures used in a centralized approach are not necessarily
appropriate for a distributed formulation. The effect was
that remotely generated results sometimes caused nodes to
pursue lines of attack that were not as fruitful as the ones
they had been pursuing before receipt of those results.
Some evidence of this phenomenon can be inferred from
the experiments that were performed in which some results

12In organization theoretic terms, the fourth nodes carries out an
“integrating role.” Hierarchical control of this type is a standard mecha-
nism used by human organizations to deal with uncertainty [9], [8]. In the
contract net approach, the managers for tasks are in the best position to
perform such duties.

were lost in transmission. In some cases, system perfor-
mance actually improved, an indication that nodes some-
times distract their neighbors. Once again, much work
remains to be done in this area.

VIII. CONCLUSION
Two complementary forms of cooperation in distributed

problem solving have been discussed: task-sharing and
result-sharing. These forms are useful for different types of
problem and for different phases of distributed problem
solving. Task-sharing is useful in the problem decomposi-
tion and answer synthesis phases of distributed problem
solving. It assumes that subproblem solution can be
achieved with minimal communication between nodes. Re-
sult-sharing is useful in the subproblem solution phase
when kernel subproblems cannot be solved by nodes work-
ing independently without communication with other
nodes. It is also helpful to some extent in the answer
synthesis phase — in particular, for problems in which the
answer synthesis phase is essentially a continuation of the
subproblem solution phase. We eventually expect to see
systems in which both forms of cooperation are used,
drawing upon their individual strengths to attack problems
or which neither form is sufficiently powerful by itself.

ACKNOWLEDGMENT

These ideas have evolved as a result of many discussions
with our colleagues. The contributions of Victor Lesser, Rick
Hayes-Roth, and Steve Zucker have been particular helpful.

REFERENCES

[1] J. L. Baer, “A survey of some theoretical aspects of multiprocessing,”
Comput. Surveys, vol. 5, pp. 31–80, Mar. 1973.

[2] H. G. Barrow and J. M. Tenenbaum, “MSYS: A system for
reasoning about scenes,” SRI International, Menlo Park, CA, SRI
AIC TN 121, Apr. 1976.

[3] E. K. Bowdon, Sr., and W. J. Barr, “Cost effective priority assign-
ment in network computers,” in FJCC Proc., vol. 41. Montvale,
NJ: AFIPS Press, 1972, pp. 755–763.

[4] R. E. Carhart, D. H. Smith, H. Brown, and C. Djerassi, “Applica-
tions of artificial intelligence for chemical inference — XVII: An
approach to computer-assisted elucidation of molecular structure,”
J. Amer. Chem. Soc., vol. 97, pp. 5755–5762, Oct. 1, 1975.

[5] R. Davis and R. G. Smith, “Negotiation as a metaphor for distri-
buted problem solving,” in preparation.

[6] C. R. D’Olivera, An Analysis Of Computer Decentralization, Mas-
sachusetts Inst. Technol., Cambridge, MIT LCS-TM-90, Oct. 1977.

[7] L. D. Erman and V. R. Lesser, “A multi-level organization for
problem solving using many, diverse, cooperating sources of knowl-
edge,” in Proc. 4th Int. Joint Conf. Artificial Intelligence, Sept. 1975,
pp. 483–490.

[8] M. S. Fox, “An organizational view of distributed systems,” IEEE
Trans. Syst. Man, Cybern., vol. SMC-11, pp. 70–80, Jan. 1981, this
issue.

[9] J. R. Galbraith, “Organizational design: An information processing
view,” in Organizational Psychology, 2nd ed., D. A. Kolb et al., Eds.
Englewood Cliffs, NJ: Prentice-Hall, 1974, pp. 313–322.

[10] C. Hewitt, “Viewing control structures as patterns of passing mes-
sages,” Artificial Intelligence, vol. 8, pp. 323–364, 1977.

70 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 1, JANUARY 1981

[11] D. B. Lenat, “Beings: Knowledge as interacting experts,” in Proc.
4th Int. Joint Conf. Artificial Intelligence, Sept. 1975, pp. 126–133.

[12] V. R. Lesser, R. D. Fennell, L. D. Erman, and D. R. Reddy,
“Organization of the HEARSAY II speech understanding system,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-23, pp.
11–24, Feb. 1975.

[13] V. R. Lesser et al., “Working papers in distributed computation I:
Cooperative distributed problem solving,” Dep. Comput. and
Inform. Sci., Univ. of Massachusetts, Amherst, July 1979.

[14] V. R. Lesser and L. D. Erman, “Distributed interpretation: A
model and experiment,” IEEE Trans. Comput., vol. C-29, pp. 1144-
1163, Dec. 1980.

[15] H. P. Nii and E. A. Feigenbaum, “Rule-based understanding of
signals,” in Pattern-Directed Inference Systems, D. A. Waterman
and F. Hayes-Roth, Eds. New York: Academic, 1978, pp. 483–501.

[16] N. J. Nilsson, Problem Solving Methods In Artificial Intelligence.
New York: McGraw-Hill, 1971.

[17] R. G. Smith and R. Davis, “Applications of the contract net
framework: Distributed sensing,” Proc. ARPA Distributed Sensor

 Net Symp., pp. 12–20, Dec. 1978.
 [18] R. G. Smith, “A framework for problem solving in a distributed

processing environment,” Dep. Comput. Sci., Stanford Univ., Stan-
ford, CA, STAN-CS-78-700 (HPP-78-28) Dec. 1978.

[19] _____, “The contract net protocol: High-level communication and
control in a distributed problem solver,” IEEE Trans. Comput., vol.
C-29, pp. 1104–1113, Dec. 1980.

[20] D. L. Waltz, “Generating semantic descriptions from drawings of
scenes with shadows,” Massachusetts Inst. Technol., Cambridge,
MIT AI-TR-271, Nov. 1972.

[21] P. H. Winston, Artificial Intelligence. Reading, MA: Addison-
Wesley, 1977.

[22] S. W. Zucker, R. A. Hummel, and A. Rosenfeld, “An application of
relaxation labelling to line and curve enhancement,” IEEE Trans.
Comput., vol. C-26, pp. 394–403, Apr. 1977.

[23] S. W. Zucker, Y. G. Leclerc, and J. L. Mohammed, “Continuous
relaxation and local maxima selection,” Dep. Elec. Eng., McGill
Univ., Rep. 78-15R, Dec. 1978.

