
DEfEnCE RESEARCH ESTABLISHmEnl

HllHnTIC

RESEARCH AND DEVELOPMENT BRANCH
DEPARTMENT Of NATIONAL DEFENCE

CANADA

UNIT PACKAGE USER'S GUIDE

0. R. E. A. TECHNICAL MEMORANDUM 80/L

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC CENTRE DE RECHERCHES POUR LA DfFENSE ATLANTIQUE
9 GROVE STREET P.O. BOX 1012

DARTMOUTH, N.S: TELEPHONE

(902) 426-3100

9 GROVE STREET

B2Y 3Z7

RESEARCH AND DEVELOPMENT BRANCH

DEPARTMENT OF NATIONAL DEFENCE

CANADA

C.P. 1012

DARTMOUTH, N.E.

B2 Y 3 Z7

DEFENCE RESEARCH ESTABLISHMENT

ATLANTIC

DARTMOUTH N.S.

0.R.E.A. TECHNICAL MEMORANDUM 80/L *

UNIT PACKAGE USER'S GUIDE

R. G. Smith P. Friedland
**

December 1980

Approved by R. F. Bro W n Director / Underwater Acoustics Division

DISTRIBUTION APPROVED BY

.:;;37�._gcJ ___,,..,_

CHIEF D.R. E.A.

RESEARCH AND DEVELOPMENT BRANCH

DEPARTMENT OF NATIONAL DEFENCE

CANADA

* Also published as Stanford Heuristic Programming Project Memo HPP - 80- 28

** Computer Science Department, Stanford University, Stanford, CA, 94 305

i

ABSTRACT

The UNIT Package is a frame-structured, hierarchically-organized knowledge representation
and acquisition system. The package has nodes for Individuals, classes, Indefinite Individuals,
and descriptions. Links between the nodes are structured with explicit definitional roles,
types of inheritance, defaults, and various datatypes.

This report contain;; an overview of the UNIT Package, a guide to the use of the Unit Editor
(UE), a summary of the contents of the BOOTSTRAP knowledge base, and a summary of high-
level access functions.

It also contains implementation information, including a discussion of the underlying data
structures, global variables and low-level functions,

ii

..

...

RESUME

L'ensemble UNIT est un systeme d'acquisition et de representation
d'elements de connaissance a cadre structure et organisation hierarchique.
Cet ensemble renferme des noeuds pour les elements, les classes, les
elements indefinis et les descriptions. Les liaisons entre les noeuds
possedent une structure decoulant de l'utilisation de r6les de
definition explicites, de types de relation, de defauts et de divers
types de donnees.

Le present rapport renferme un aper�u de l'ensemble UNIT, un
guide pour l'utilisation du programme d'edition, un resume de la teneur de
la base d'elements de connaissance BOOTSTRAP (amor�age) et un resume des
fonctions d'acces evoluees.

On y trouve egalement des renseignements sur la mise en oeuvre,
y compris une analyse des structures de donnees sous-jacentes, des
variables globales et des fonctions peu evoluees.

iii

Table of Contents

Chapter Page

1. Introduction · 1

2. Basic Principles of the UNIT Package • . 2

2.1 Groups: Classifying Units. 2

2.1.1 UNIT Package Groups. 2

2.2 Units 3
::.

2.2.1 Instances and Specializations 3

2.2.2 Indefinite Units . . . 4

2.2.3 Description Units . 6

2.3 Slots 6

2.3.1 Value 6

2.3.2 Inheritance Role 6

2.3.2.1 S (Same). . . . 7

2.3.2.2 R (Required) 7

2.3.2.3 . O (Optional) 8

2.3.2.4 U (Unique) g

2.3.3 Definitional Role . g

2.3.4 Datatype 10

2.3.5 Optional Fields. 10

�
2.4 Procedural Attachment . 10

iv

":.

,:::

2.4.1 Messages For Procedure Activation • 11

3. UE: The Unit Package Knowledge Base Editor • . • • • • • . • • • • • • 12

3.1

3.2

3.3

Getting Started with UE • • . • . . • .

3.1.1 Interaction With UE: General Information

The User Profile

12

13

14

3.2.1 Control Characters • 14

UE Commands 16

15

15

15

15

16

16

17

17

3.3.1

3.3.2

3.3.3

3.3.4

3.3.5

3.3.6

3.3.7

3.3.8

COMPACT

CONSISTENCY. .

COPY .

CREATE

DELETE . .

DISPLAY . . .

DONE

EDIT .

3.3.8.1

3.3.8.2

CLASSIFY • •

CDEFAULT.

.

.

.

.

. . .

. . .

. . .

. .

. . .

. .

. .

. .

. .

. . .

17

17

3.3.8.3 CLEARVALUE . • . . • 18

3.3.8.4

3.3.8.5

3.3.8.6

3.3.8.7

3.3.8.8

3,3.8.9

COPY • 18

CREATE

DELETE

DISPLAY

DONE • •

EDIT . •

V

. ..

18

18

18

18

19

3.3.9

3.3.8.10

3.3.8.11

3.3.8.12

3.3.8.13

3.3.8.14

3.3.8.15

3.3.8.16

3.3.8.17

3.3.8.18

3.3.8.19

GROUP

3.3.9.1

3.3.9.2

3.3.9.3

3.3.9.4

3.3.9.5

3.3.9.6

3.3.9.7

FIELD-EDIT

!HELP.

MSG

OK

PRINT • • . . .

!PRINT.

RENAME

SETDEFAULT

SHOWRELATIONS.

SORT • .

COPY • • . I •

CREATE

DELETE

DISPLAY

DONE or OK

PRINT • • • •

REMOVE

3.3.10

3.3.11

3.3.12

3.3.13

3.3.14

3.3.15

3.3.16

!HELP

INSTANTIATE

LISP

MATCH

MOVE

MSG

?MSGS

vi

19

20

20

20

20

21

21

21

21

21

22

22

22

22

22

23

23

23

23

23

23

24

24

24

25

;:.

4 -"

4.

3.3.17 NETWORK

3.3.18 OK

3.3.19 PRINT

3.3.20 !PRINT

3.3.21 RECORD

3.3.22 RENAME .

3.3.23 SAVE .

3.3.24 SET .;PROFILE

3.3.25 SHOWREFS

3.3.26 SPECIALIZE

3.3.27 SPLITUNIT

3.3.28 SUMMARYFILE •

3.3.29 TRANSFER

3.3.30 . TSHOW

3.3.31 WHATSNEW

. . . .

.

. .

.

.

. .

. .

.

.

.

.

. . .

. . .

. . .

. .

. .

.

25

25

25

26

26

26

. . 26

. . . 26

28

28

28

28

28

29

29

BOOTSTRAP: An Initial Knowledge Base 30

4.1 The Basic Units 30

30

31

4.1.1

4.1 .. 2

ROOT

DATATYPE

4. 1 .3 Individual Datatypes • 34

4.1.3.1

4.1.3.2

4.1.3.3

4.1.3.4

ATOM • • • • • • · • 34

BOOLEAN . . • . • • 34

EXPR f • • • • • • • • • • • � • • 34

INTEGER . • • • . • 34

vii

r.

5.

4.1.3.5

4.1.3.6

4.1.3.7

4.1.3.8

INTERVAL •. • • • • • • 34

. 4.1.3.9

LISP

LIST

NUMBER

STRING

4. 1 .3. 1 0 TABLE •

4. 1 .3.11 TEXT

4. 1.3. 1 2 UNIT

36

35

36

36

36

36

36

4. 1.3. 13 BOOKKEEPING DATA TYPES • • • • • • • • • • • • • • • • • • 3 7 .

4.2 Creating New Data types. • • • • • • . • • • • • • • • • • • • • • • • • • • 3 7

4.3 The Individual Oatatype Editors. • 37

4.3.1 The ATOM Editor • • • : • 38

4.3.2 The BOOLEAN Editor • 38

4.3.3 The EXPR Editor • 38

4.3.4 The INTEGER Editor

4.3.5 The INTERVAL Editor

39

39

4.3.6 The LISP Datatype Editor. • • • . • • • • • • • • • • • • • • • • • • 40

4.3.7 The LIST Editor 40

4.3.8 The NUMBER Editor • 41

4.3.9 . The STRING Editor.

4.3.10 The TABLE Editor •

4.3. 11 The TEXT. Editor •

4.3. 1 2 · The UNIT Datatype Editor

41

42

42

43

Functions In The UNIT Package. • 46

viii

;;.

,�

5.1

. 5.2

"'

5.3

Functions That Operate On Knowledge Bases

5.1.1 NETWORK? (FILENAME FLG) •

5.1.2 OPENNETWORK (FILE FLG)

5.1.3 CLOSENETWORK (FLG)

5.1.4 CANCELNETWORK () .

5.1.5 MAKENETWORK (FILE). .

5.1.6 COPYNETWORK (FROMFILE TOFILE)

5.1.7 COMPACT (FACTOR)

Functions That Operate On Units:

5.2.1 UNIT? (UNIT)

5.2.2 MAKEUNIT (UNIT RELATIVE RELATION CLASS) . .

5.2.3 DELETEUNIT (UNIT KEEPSPECFLG MSGFLG).

5.2.4 RENAMEUNIT (OLDNAME NEWNAME FIXFLG). .

5.2.6 INSTANTIATE (UNIT)

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

.

. . .

. . .

. . .

. .

. . .

. . .

. . .

.

. . .

.

.

.

.

. . . .

.

. . . .

. . . .

.

.

.

.

.

.

.

.

5.2.6 SPECIALIZE (UNln

5.2.7 COPYUNIT (FROMUNIT TOUNIT)

5.2.8 MOVEUNIT (UNIT PARENT PFLG) •

6.2.9 SPLITUNIT (OLDUNIT TOPUNIT TOPSLOTS)

6.2.10 MAKEUNITNAME (PREFIX).

5.2.11 UNITNAMESORT (UNIT1 UNIT2)

Functions For Computing Built-in Relations On Units

5.3.1 LISTRELATIVES (UNIT RELATION CLAssi

5.3.2 GEN (UNIT)

5.3.3 PROTO (UNIT)

6.3.4 PARENT (UNIT).

ix

. . 46

46

45

. . 46

46

46

. . 47

. . 47

. . 47

. . 47

. . 47

. 48

. 48

. . 48

. 48

48

49

. 49

. . 49

. . 50

. . 50

60

60

50

60

5.3.6 SPEC (UNIT CLASS)

5.3.6 INST (UNIT CLASS)

5.3. 7 SPEC• (UNIT CLASS) •

5.3.8 INSP (UNIT CLASS)

50

51

51

51

5.3.9 PROGENY" {UNIT CLASS) • 51

·5.3.10 PROGENY? (UNIT) . • 51

5.3.11 PROGENYCLASS? (UNIT CLASS) • • •• • • • 51

6.3.12 ANCESTOR? (UNIT ANCESTOR) 61

· 5.3.13 INSP? (UNIT INST) • • • • • • • • . • • • • • • • • • • • • • • • • 52

5.3. 1 4 GENLEVEL {UNIT ANCESTOR) • 52

6.4 . Functions That Pertain To Group Classification Of Units • 52

5.5

6.4.1

6.4.2

6.4.3

CLASS? (UNIT CLASS) . . • • •

CLASSIFY {UNIT CLASS ONLYFLG)

DECLASSIFY (UNIT CLASS ONLYFLG} •

52

52

52

5.4.4 COPYGROUP (FROMGROUP TOGROUP) • • • • • • • • • • • • • • • • 52

Functions That Operate On Slots • . . 53

5.5.1 SLOT? (SLOT UNIT) •.. 53

5.5.2 MAKESLOT (SLOT UNIT ROLE DATATYPE) • • • • • • • • • • • • • • 53

5.5.3 DELETESLOT (SLOT UNIT KEEPFLG MSGFLG) ••••••••• • ••• 53

5.5.4 RENAMESLOT (SLOT UNIT NEWNAME) . .

SORTSLOTS (UNIT SLOTLIST SORTFLG).

53

54 6.6.5

5.5.6

6.6.7

5.5.8

5.5.9

LISTSLOTS (UNIT FIELD VALUE) • 54

PROGENYSLOT? (SLOT UNIT FIRSTFLG). • • • • • • • • • • • • • • • 54

TOPLEVELUNIT? (SLOT UNIT) ••

TOPLEVELSLOT? (SLOT UNIT)

X

55

65

::.

5.6

:!!

5.7

�

5.5.10 INHERITEDSLOT? (SLOT UNIT) .

5.5.11 UNCHANGEDSLOT? (SLOT UNIT) .

5.5.12 TRACKINGSLOT? (SLOT UNIT)

5.5.13 SLOT-MENTIONS (SLOT UNIT CLASS SKPLST REFSFLG)

5.6.14 UNIT-MENTIONS (UNIT CLASS REFSFLG) • • , • • . • • • • • • •

6.5.15 SHOWREFS (UNIT CLASS REFSFLG) • • • • • • • • • • • • • • •

6.6.16 FIX-SLOTREFS (UNIT OLDNAME NEWNAME)

Functions That Operate On Fields

5.6.1 FIELD? (FIELD SLOT UNIT)

. . .

. .

. . .

.

.

.

�

55

55

55

55

66

66

56

56

56

5.6.2 LISTFIELDS (SLOT UNIT NOT-FIXED-FIELDS-FLG) ••••••••••• 66

5.6.3

6.6.4

5.6.5

5.6.6

5.6.7

6.6.8

5.6.9

5.6.10

5.6.11

5.6.12

MAKEFIELD (FIELD SLOT UNIT) .

DELETEFIELD (FIELD SLOT UNIT).

.

. . . .

GETFIELD (FIELD SLOT UNIT) ••••••••••••••••••

PUTFIELD (VALUE FIELD SLOT UNIT PFLG) • • • • • • • • • • .

GETROLE (SLOT UNIT) .•.•••••••••••••••••••

ROLE? (SLOT UNIT ROLE) ..••••••••••••••••••

.

.

PUTROLE (ROLE SLOT UNIT) . • • • • • • • • • • • • • • • . .

CHANGEROLE (ROLE SLOT UNIT) •

DELETEROLE (ROLE SLOT UNIT) •

. . . .

DATATYPE? (SLOT UNIT DATATYPE) •••••••••••• • • •

Functions For Operating On Values •••••...•••••••••••

. .

. .

.

. .

. .

.

.

. .

.

.

6.7.1 GETVALUE (SLOT UNIT)

6.7.2 PUTVALUE (SLOT UNIT VALUE NOTESTFLG ROLE TV PFLG). .

6.7.3 GETVORD (SLOT UNIT FASTFLG) • • • • • • • • • • • • • •

5.7.4 EDITSLOT (SLOT UNIT FAKERESTRICTION FAKEVALUE NOEFLG)

xi

56

. 57

57

57

. 67

57

57

. 58

58

59

59

69

. 60

60

60

'-

5.8

6.9

6.10

5.7.5.

5.7.6

5.7.7

5.7.8

5.7.9

5.7.10

6.7.11

PRINTSLOT (SLOT UNIT FAKEVALUE NOCRFLG POSLST)

GETRESTRICTION (SLOT UNIT ROLE). . . .

TERMINALVALUE? (SLOT UNIT FAKEVALUE) ••

.

.

. . .

. . .

. .

. . . .

. . .

CHECKRESTRICTION (SLOT UNIT VALUE RESTRICTION ROLE)

PROGENYRESTRICTION (SLOT UNIT RESTRICTION FIRSTFLG
ROLE)

CLEARBADVALUES (SLOT UNIT RESTRICTION) .

EDITBADVALUES (SLOT UNIT RESTRICTION) •••

.

. .

.

. .

. . .

. . . .

. . .

.

.

.

Message functions

5.8.1 UNITMSG (UNIT TOKEN ARG1 ... ARGN)

.

.

.

.

.

.

.

5.8.2 SLOTMSG (SLOT UNIT TOKEN FAKEVALUE ARG2 ARGUST).

6.8.3 MSGHANDLER? (SLOT UNIT TOKEN) ••••• .

Functions That Operate On Datatypes •

5.9.1

5.9.2

5.9.3

5.9.4

5.9.5

5.9.6

5.9.7

5.9.8

5.9.9

GETMATCHES (SLOT UNIT)

GETUNITS (SLOT UNIT)

GETUNIT (DESCR).

. .

. .

.

.

.

. .

.

.

· UN.ITMATCH (DESCR START CLASS).

SLOTMATCH (GEN SLOT VAL CLASS).

REF? (SLOT UNIT) ••

.

. . . .

GET-REF (REFEXPR)

RESOLVE-GROUP (CLASS START)

.

.

.

RESOLVE-EXPR(EXPR)

.

LIST Data type Functions

5.10.1

5.10.2

GET-UST (SLOT UNIT) . . .

PUT-LIST (SLOT UNIT LIST) .

xii

. . .

. . .

.

.

.

.

.

.

.

.

. .

. .

.

. .

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

.

. .

.

.

. .

.

.

. .

. .

. .

.

.

.

.

.

.

.

.

.

. .

. . .

. . .

.

. .

.

.

.

. .

.

.

.

. .

.

. .

.

.

. . . .

.

. . . .

. . . .

.

.

.

. . . .

.

. . . .

A•

61

61 ""

61

61

62

62

63

63

63

63

64

64
\•

64

64

65

65

65

65

65

66

66

66

66

66

6.

7.

8.

6.10.3 ADD-LIST (SLOT UNIT ITEM) . . . • • • . . • • • • • • • 66

6.10.4 CLEAN-LIST (SLOT 1,JNIT) . • . • . • • • . . • • • . • • • • • • • • • 66

6.10.6 GET-LIST-DATATYPE (LST) • • . • • • • • • • • • • • • • • • • • • 67

5.1 0.6 . GET-LIST-ELEMENT (LST ELEMNUM). • • • • • • • • • . • • • • • • • 6 7

Implementation Notes 68

68 6.1 Units: Internal Representation • • • . • • • .

6.2 Unit Memory Management and Disk Representation • • • • • • • • • • • • • 69

6,3 Implementation of Inheritance

6.3.1

6.3.2

Standard Format . • .

S Format

. • . . , . , • 71

71

72

6.3.3 No change format. • • . • • . • • • • • • • • • • • • • • 72

6.3.4 Role Change Format: . • . • . • • • • • • . • • • . • • • • • • • • • 73

UNIT Package: Global Variables •• • . • • • • 7 4

UNIT Package: Internal Functions • I I I I I I I I t I I I I I 7 7

8.1 Unit Access Internal Functions . 77

8.1.1

8.1.2

8.1.3

8.1.4

8.1.6

8.1.6

8.1.7

8.1.8

UA-ASSIGNBLOCK (SIZE) 77

UA-BUMPUNITS (CURUNIT) • . • • • • • • • • • • • • • • • • • • • 77

UA-CHANGEROLE (SLOT UNIT ROLE CASE MASTER} . • • • • • • • • • 77

UA-COMISSUE (COMMAND JUNKFILE) • • • • • • • . • • . • • • • • 77

UA-DELETEROLE1 (SLOT UNIT ROLE CASE) ••

UA-DELREL (UNIT). •

78

78

UA-DELSLOT (SLOT 'UNIT KEEPFLG MSGFLG) • • • . • . • • • • • • • 78

UA-ERRMSG (ERRNO TOKEN). • 78

xiii

8.1.9

8.1.10

8.1.11

8.1.12

8.1.13

8.1.14

8.1.15

8.1.16

8.1.17

8.t.18

8.1.19

8.1.20

8.1.21

8.1.22

8.1.23

8.1.24

8.1.25

8.1.26

8.1.27

8.1.28

8.1.29

8.1.30

8.1.31

8.1.32

8.1.33

UA-GETLISPFILE (FILE) . .

UA•GETREL (UNIT RELATION) ••

UA-GETRELFILE (RELFILE)

UA-GETRELREC (UNIT FILE)

UA-GETSLOT (SLOT UNIT).

UA-GETSLOTFIELD (SLOT UNIT FIELD)

UA-HIERORDER (UNIT FLG)

UA-INITGLOBALVARS (FILE)

UA-LOADUNIT (UNIT)

. . .

. . .

. . .

. .

. . . .

. . . .

. . . .

. . . .

. . . .

.

. .

.

. .

.

.

.

.

. .

. .

.

.

.

.

.

.

.

. . .

. . .

. . .

. . .

. . .

. .

. . .

UA-LOCALFILENAME (FILENAME) •

UA-MAKEREL (UNIT)

UA-MAKESLOT (SLOT UNIT ROLE DATATYPE MASTER)

UA-MAKESTANDARD (SLOT UNIT MASTER) .

UA-OKSLOT? (SLOT UNIT ROLE DATATVPE).

UA-OPENFILE (FILENAME TYPE)

UA-OPENUNITFILE (UNITFILE). •

UA-PACKAGEFN? (FN).

. . .

.

. . .

.

. .

.

. .

.

.

.

.

UA-PATCHOELSLOT (SLOT UNIT OLDMASTER)

. . . .

. . . .

. . .

. .

.

. .

.

UA-PATCHRENAME (SLOT UNIT OLDMASTER NEWMASTERi

UA-PICKSIZE (SIZE)

UA-PROGENYSLOT? (SLOT UNIT) •• .

. .

. . .

UA·PUTHEADER (FILEPTR TAG SIZE FLINK BLINK)

UA-PUTREL (UNIT RELATION RELATIVE)

UA-PUTRELFILE (RELFILE FLG)

. .

.

UA-PUTSLOTFIELD (SLOT UNIT FIELD VALUE)

xiv

.

. .

.

.

. .

. . .

. . . .

. . . .

.

.

. . .

. .

. . .

. . .

. . .

.

. . .

. . .

. . .

. . .

. . .

• t:11

"'

. . . . 78

. . . . 78

. . . . 78

. . . . 79

. . . . 79

. . . . 79

79

79

. . . . 79

. . . . 79

. . . . 80

. . . . 80

80

80

. . . . 80

. . . . 80

80

80

. . . . 81

. . . 81

. . . . 81

. . . . 81

. . . . 81 ;;

. . . . 81

. . . . 81

8.1.34 UA-PUTTRAILER (FILEPTR TAG SIZEi • • • • • • • • • • . • • • • • • 81

8.1.35 UA-PUTUNIT {UNIT) • • • • • • • • • • • • • � • • • • • • • • • • • 82

8.1.36 UA-PUTUNITFILE (UNITFILE) • 82

8. 1.37 UA-RELEASEBLOCK (PTR). . . • 82

8. 1 .38 UA-RELEASEBLOCK 1 (PTR HEADER) . • • • • • • • • • • • • • • • • • 82

8. 1 .39 UA-RENAMESLOT (SLOT UNIT NEWNAME) 82

8.2

8.1.40 UA-SETDATATYPE (SLOT UNIT DATATYPE) •

8.1.41 UA-SETROLE (SLOT UNIT ROLE MASTER) • • • • • •

8.1.42 UA-STORERELREC (REC) . •

8.1.43 UA-TIMESORT (UNITLIST).

8.1.44 UA-UNRELATE (UNIT RELATION RELATIVE)

Unit Management Internal Functions

8.2.1

8.2.2

GETUSERNAME () • • . • • . • • • • • • • • • . • •

NOTEST (EYALUE ERESTRICTION ESLOT EUNIT EARG6)

82

82

82

83

83

. 83

83

83

8.2.3 Nil TEST (EVALUE ERESTRICTION ESLOT EUNIT EARG6) . . . 83

- 8.2.4 UM-CLEARBADVALUES (SLOT UNIT RESTRICTION) • • • • • • • • • • • 83

8.2.5 UM-NEED-TV? (SLOT UNIT ROLE} ••••••••• , ••••••••• 83

Appendix A

UE Command Summary 84

Appendix B

Slot Editor Command Summary. 86

Appendix C

Error Messages 87

xv

References
.• •· . .

\·

xvi

Chapter 1

Introduction

1

The UNIT Package 1 is a frame-structured, hierarchically-organized knowledge
representation and acquisition system. It was originally developed for the MOLGEN project
at Stanford University [Stefik, 1979], [Friedland, 1979], [Stefik, 1980]. The package
contains a set of data structures and access functions for program manipulation of those
structures. In addition, it contains a sophisticated interactive editor, called UE. This editor
enables a domain expert (not necessarily a computer specialist) to construct a knowledge
base through direct interaction with the computer; that is, the transfer of expertise from
domain expert to machine need not be mediated by a computer specialist.

This document is intended to serve several purposes and parts of it can be Ignored
by some readers. The reader is also forewarned that the UNIT Package is an evolving
system being extended at a number of different sites. As a result, some discrepancies may
exist between the system described in this document and the system In use at any given
site.

Chapter 2 is an introduction to the basic principles of the UNIT Package. Readers
who are familiar with these principles may skip this chapter.

Chapter 3 is a user's manual for UE, the Unit Editor. This chapter forms a unit with
Chapter 4, which discusses the BOOTSTRAP knowledge base. This Is a basic knowledge
base that is intended to form the kernel of all user knowledge bases.

Chapter 5 is a detailed discussion of the operation of the access functions
offered to a user for program manipulation of UNIT knowledge bases.

Chapter 6 discusses implementation considerations for the UNIT Package. It
includes a discussion of the underlying data structures. Chapter 7 describes the Important
global variables. Chapter 8 describes the Important low-level Internal functions. These
chapters need only be read by system implementers and maintainers.

The UNIT Package is written in INTERLISP [Teitelman, 1978] and runs under the
TENEX and TOPS-20 operating systems. One of the Implementation features of the package
is that it manages the memory residency of the units of a knowledge base. Not all units need
be in memory all of the time. When memory is at a premium, the UNIT Package moves the
slots of some of the memory-resicfent units to disk. The slots of a unit remain on disk until
they must be accessed, whereupon they are returned to memory.

1 The authors wish to acknowledge the contribution of Mark Steflk. He was
responsible for much of the original conception of the UNIT Package as well as much of the
original code.

2

Chapter 2

Basic Principles of the UNIT Package

Knowledge in the UNIT Package is organized as a partitioned semantic network of
nodes and links. Following KRL terminology [Bobrow, 1977], the nodes are called units and
the links are called slots. Units are connected to each other In a generalization hierarchy
with a number of modes of property Inheritance. The representation Is termed structur,d
because It provides a vocabulary of standard node types (for variables and constants), link
types (to define properties of the links), and attached procedures to be used uniformly In a
knowledge base.

The. UNIT Package provides mechanisms for building a knowledge base and
operating on its components. It does not, however, provide for a standard Interpretation of
units. Although units can be created to represent many different entitles (e.g., objects,
operations, assertions, hypotheses), the Interpretation of the units depends on user-supplied
software.

2.1 Groups: Classifying Units .

While a knowledge base is ultimately composed of nodes and links, it Is often useful
to form larger organizations of units. For this purpose the UNIT Package provides a faclllty
for partitioning a knowledge base into (possibly overlapping) explicit sets (similar to spaces In
Hendrix's partitioned semantic networks [Hendrix, 1975]). These sets are referred to as
groups in the UNIT Package.

One important use for groups is to denote contexts (e.g., all of the units In a given
experimental plan can be put into a group). The UNIT Package provides an efficient notation
for groups and a number of functions that operate on all members of a group.

2. 1. 1 UNIT Package Groups

The following is a . list of the specific groups recognized and used by the UNIT
Package. An explanation of the use of each group is also given.

DESCR: Indicates that the unit is a description unit (Section 2.2.3).

INDEFINITE: Indicates that the unit is an indefinite unlt (Section 2.2.2).

PRIMITIVE: Indicates that the unit describes a primitive datatype (Section 2.3.4).

BOOKKEEPING: · Indicates the unit is used for automatic system documentation and
bookkeeping. (Automatic documentation is effected by the interactive editor, UE [Chapter
3]).

::;

..

3

HACKER: Indicates that the unit will normally only be shown to the user by UE If his profile
(Section 3.1) indicates that the he is a hacker.

HIDESLOT: A classification for datatype units. It Indicates that slot whose datatype Is so
classified will not be shown to the user unless he Is a hacker. (The effect Is analogous to
that of a HACKER classification on a unit.)

NODELETE: Indicates that the unit should never be deleted automatically, without first asking
the user.

2.2 Units

The UNIT Package provides two basic types of units: instances and specializations.
Two other types of units, indefinite units and description units, may be created under special
circumstances.

Units are implemented as INTERLISP atoms. The information associated with each unit
is stored on its property list. (See Chapter 6.)

2.2. 1 Instances and Specializations

The distinction between instances and specializations may be thought of on two levels:
philosophical and practical. Philosophically, that is, thinking of the generalization hierarchy In
the UNIT Package as a semantic net, Instances are used to represent distinct entitles; that
is, individuals. An instance is analogous to a constant term In predicate calculus. Examples
from MOLGEN are Lambda-phage (a particular DNA molecule), Plan-step-J (a particular

planning step) or Electron-microscopy (a particular laboratory tool).1

Specializations are used to represent classes; that is, a branch of the generalization

hierarchy.2 A specialization partially describes all of its potential progeny by expressing all of
the attributes that are required for members of the class; it Is the generalization of other
specializations and Instances below it in the hierarchy. Information In a specialization Is
assumed to be true for all of its progeny and Is Inherited by them. The specialization
Bacterium expresses general Information about bacteria such as that they have a gramstaln
which may be either positive or negative. A specialization for the bacterial species E. coll
may inherit this information or add to It as appropriate. In Section 2.3.2 we will see that
there are several modes of Inheritance and It Is necessary to be specific about exactly what
is inherited.

Practically, there are only two distinctions made between instances and
specializations: only specializations may have progeny (either further specializations or

1 This text uses the convention that all references to specific units and slots are
shown in Italics. Units are Indicated by capitalizing their first letter. For slots, the first letter
is not capitalized.

2 Not to be confused with a group as described in Section 2.1.

4

instances) and certain types of slots (see Section 2.3.2) must be given actual values
(rather than descriptions of possible values) in Instances. Therefore, one may construct a
hierarchy entirely of specializations without loss of generality.

2,2,2 Indefinite Units

Indefinite units are used to refer to an Instance whose Identity may be unknown.
Different indefinite units can stand for the same Individual. They are an augmented form of
the existentially quantified variable. The augmentation allows us to Indicate that two

variables are equal without knowing their values.3

Indefinite units are commonly created through the action of the Unit Datatype Editor
(see Section 4.3.12). The fundamental links for reasoning about equality for Indefinite
units in the UNIT Package are (I) an ANCHOR slot that grounds an Indefinite unit to an
instance once its identity has been determined, (II) a CO-REFS slot that ties Indefinite units
together, and (iii) a NOT-CO-REFS slot that separates Indefinite units. Two Indefinite units
are defined to be equal if they have the same anchor or If they are marked as being co­
referential (i.e., each is contained in the CO-REFS slot of the other). Two Indefinite units are
not equal If they have different anchors, or if they are marked as being not-co-referential (I.e.,
each is contained in the NOT-CO-REFS slot of the other), or If their scopes do not

lntersect.4 In all other cases, equality Is unknown.

It is often important in planning to indicate that two Indefinite objects are the same or
different without assigning them to specific constants. In the blocks world, a simple example
is when a planner is working to build. an arch. It should be able to Indicate that the two
supporting blocks are different before it decides which blocks to use as supports. · Without
this notational ability, a planner might try to use the same block to support both sides.
Indefinite units are also useful for planning in situations Involving unknown entitles when the
entire purpose of the plan is to sort out the identities of objects. The need for such entitles
In natural language processing (where they are sometimes called intensional nodes) has also
been recognized [Woods, 1975].

Although the UNIT Package does satisfy the need for a distinguishing and uniform
representation of these variable units, numerous difficulties are still left for the user to solve
for his Individual application. For example, he must provide mechanisms for (I) deciding when
there is enough evidence to conclude about equality of entities, and (11) combining the
(possibly conflicting) attributes of the various hypothetical objects once their common
identity has been concluded.

3 This is like the augmentation of predicate calculus to predicate calculus with equality
except that it provides for the logical possibility that equality may be unknown.

4 A scope in the UNIT Package is simply a branch of the generalization hierarchy.

::.

=-

6

2.2.3 Description Units

Description units are used to refer to a specialization whose identity may be unknown.
These units are used for matching and reasoning about abstract classes. Whereas anchoring
is the key to equality of indefinite units, matching is the key to equality of description units.
The group defined by a specialization is the complete set of Its progeny In the generalization
hierarchy; the extension of a description unit is the set of instances and specializations that
match it_. Two description units are defined to be equal If they potentially match the same

units5 · or if they are indicated as being co-referential (I.e., each contains the other In Its co­

REFS slot). Description units are commonly created by the action of the MATCH command
_ (Section 3.3.13) or the Unit Datatype Editor (Section 4.3.12).

2.3 Slots

Slots store the information pertinent to each unit In the hierarchy. They may be
thought of as the links between the nodes of a semantic net, or simply as the properties of
each class of individual represented by a unit.

Each slot has been given structure through a set of fields or aspects associated with
the slot. The fields hold information that indicates how a slot is to be interpreted. The UNIT
Package has a set of predefined fields (called permanent fields) for the name, value,
inheritance role, default, and datatype for a slot. The package also supports the addition of
fields (called optional fields) for other information, such as attached procedures.

The permanent fields are defined as follows.

Name: Name of the slot. All slots are referred to by name.

Value: Stored value of the slot. The type of information In the value field is governed by the
datatype of the slot and may be influenced by restrictions inherited from its parent in the
generalization hierarchy. The UNIT Package distinguishes between values that are terminal
and values that are value-restrictions (I.e., descripttons of acceptable values).

Default: Terminal value for the slot to be used in the absence of specific Information. The
contents of the default field must obey the same restrictions as the contents of the value
field.

Datatype: The datatype field of a slot provides the primary information describing the type of
information that can go into the value and default fields of the slot. Examples of datatypes
are: links to other units in the hierarchy, integers, strings, lists, and tables. The datatype
field is discussed in Section 2.3.4.

Inheritance Role: The mode of inheritance of the value field of the slot by progeny of the
unit in which it Is defined. Four distinct roles are supported by the UNIT Package (see
Section 2.3.2).

5 The operational test for deciding whether two description units match the same units
Is that they match each other.

2.3.1 Value

6

The method used to retrieve the value of a slot allows tor the case of Indirect
reference to slots and computed values. If a simple stored value exists In the value field of
a slot, then it is returned as the value of the slot. Otherwise, if the slot exists, but has no
value, but has a TO-GET field, then the procedure in that field Is Invoked. Otherwise, If the
slot doesn't exist, but there is a function with the same name as the slot, then that function
is Invoked with the name of the unit as its argument. Finally, If the slot doesn't exist, but
there Is a unit with the same name as the slot, then the value finding process commences

recursively on the slot named VALUE In that unit.

2.3.2 Inheritance Role

The idea of hierarchical inheritance of properties has its roots in the Inferential
machinery discussed in Quiliian's thesis [Quillian, 1968]. In Its simplest form, a value Is
defined in the most general schema to which it applies. Nodes corresponding to descendants
of the schema inherit the value. It has been noted [Brachman, 1977] that, while a slot In an
individual is intended to assert a property of the. individual, a slot In a schema Is often
intended to restrict the legal values of corresponding slots In Its potential progeny. These
alternative meanings of slots (slots used to define properties versus slots used to
instantiate properties) are important for the understanding of Inheritance and are not always
clearly differentiated in network formalisms.

Inheritance roles provide information about the interpretation of the value of a slot.
They indicate (i) transmission instructions tor the information, and (ii) whether the value Is
criteria/ (fundamental or essential) to the definition of the unit. Inheritance roles are also
used by the interactive editor in the UNIT Package to determine what kind of checking Is
performed when knowledge is entered by the user.

In the UNIT Package the progeny of a unit i.n the generalization hierarchy always Inherit
slots that are defined in that unit; that is, if a slot with name color is defined in unit A, then all
progeny. of A will have a slot with name color. The default, datatype, and Inheritance role
fields are also inherited. The value field, however, is treated differently; the Inheritance role
field of a slot specifies limitations on the contents of the value field and how the contents of
the value field are transmitted to progeny of the unit in which the slot Is defined. Four
Inheritance roles (S, R, 0, and U), are recognized. The four roles are Illustrated In Figure 1.
The boxes indicate units; the arrows Indicate specialization or Instance relationships
between units.

We will see that the first three roles are decreasingly strict. With with the S role, a
value is directly inherited. With an R role, direct inheritance does not apply, but a terminal
value is required tor instances. With the O role, a terminal value Is optional In Instances. By
contrast, the U role ignores the nesting of values in progeny altogether.

=-

s

Same
Value

Color: Red

s

Color: Red

S or I

Color: Red

2.3.2.1 S (Same)

R

Required
(with Nested
Restrictions)

Color:
One of:
(Red, Green<Blue, BlackJ

s

Color:
One of:
(Red, Blue)

I

LJ

0

Optional
Terminal
Values

Size:
Range

(19 - 29)

s

�

Size:
Range

(15 - 29)

I

'

Size:
Range

(16 - 18)

Figure 1. Modes Of Inheritance.

7

u

Unique
Value

Date:

15 Jan 78

s

Date:

13 Har 77

s or I

�

Date:

15 Feb 78

The simplest role Is direct Inheritance of slot values by all progeny. This Is termed the
S role because the slot has the same value In the defining unit and all of Its progeny. An
actual value (called a terminal value as opposed to a restriction) Is given for the slot In the
value field. Furthermore the UNIT Package will only allow that value to be changed In the unit
in which the slot was originally defined. This role Is Illustrated In the leftmost column In Figure
1. All of the units in this column inherit the same value (blue) for the slot named color.

2.3.2.2 R (Required)

The R role is for inheritance of requirements; it Is for slots that are criteria! to the
definition of a unit. The value in a specialization is interpreted as a restriction on the value
fields for the corresponding slots in its progeny. The values In Inherited R slots in progeny

8

need not be the same as in the specialization, but may be further restricted.6 Because these
slots are criteria! to the definition of a concept, the value of an R slot In an Instance must be
terminal; that is, an actual value instead of a description of a value.7

This role is illustrated in the second column of Figure 1. Here the top unit has a slot
named color containing the description One of: red, green, blue, or black. The color slot In Its
specialization is further restricted to allow only red or blue. The bottom unit Is an Instance
and must have a terminal value. The slot in this unit is filled with the value red.

If a slot has the R role and nothing further has been specified in its progeny (I.e., no
field has been changed), the values of all fields in the progeny are altered whenever those
fields in the most general unit are altered. (This automatic tracking ceases If the values In
progeny are independently modified.)

2.3.2.3 o (Optional)

The O role is similar to the R role except that the slot is optional (I.e., incidental to the
definition of the unit--not criteria!). Thus, the value of an O slot In an Instance need not be
filled in with a terminal value--it can be a · value-restriction. This can be used either to
indicate that the slot Is not relevant to every member of the class or that the Information
contained in the slot will not always be fully known for each member of the class.

In the third column of Figure 1. the top unit has a slot named size containing the
description a number between JO and 20. The value in Its specialization Is restricted to be a
number between J 5 and 20. The instance at the bottom may have either a description or a
number.8

If a slot has the O role �nd nothing further has been specified In Its progeny (I.e., no
field has been changed), the values of all fields In the progeny are altered whenever those
fields in the most general unit are altered. (This automatic tracking ceases If the values In
progeny are independently modified.)

6 The interpretation of further restricted is governed by the datatype of the slot. For the
NUMBER datatype, the value-restrictions are numeric ranges or lists. For the UNIT datatype,
the value-restrictions may be description units or ancestor specifications.

7 The UNIT Package indicates the inheritance role of an R slot that has been filled with
a terminal value as (SR). This is to show that It behaves the same way as S role slots with
respect to further progeny.

8 The UNIT Package indicates the inheritance role of an O slot that has been filled with
a terminal value as (S O). This is to show that It behaves the same way as S roles slots with
respect to further progeny.

9

2.3.2.4 U (Unique)

The U role is for information about a node that is not to be inherited by Its progeny. The
slot value is unique at each level in the hierarchy. As with the other roles, the slot name,
datatype, and inheritance role are inherited by progeny. However, unlike the other roles, the
value is not inherited or used to limit the value of the slot in progeny. The U role is used
mainly for bookkeeping purposes in the UNIT Package (e.g., for keeping track of the creator
of a unit.)

In the fourth column of Figure 1, a date slot (corresponding perhaps to the date that the
unit was last changed) is shown in each of the units. The value of the slot In each of the
units is a string defining the date, but no relationship Is required between the values of the
slot in different units.

2.3.3 Definitional Role

The inheritance role indicates inheritance paths for properties In the generalization
hierarchy. There are, however, other familiar hierarchical relationships that do not indicate
inheritance paths. (Some common ones are element-of and part-of.) Furthermore, not all slots
bear the same relation to their parent unit.9 Consider, for example, some of the slots from the
Organism unit In a genetics knowledge base (from [Steflk, 1980]). The slot chromosome Is
used to refer to a part of the organism; the slot gramstain refers to the visible character of
the organism when a particular staining agent is applied. Without some way of distinguishing
between the different meanings for these slots, a general procedure to separate or remove
the parts of a unit might try to remove the gramstain from an organism.

The UNIT Package supports distinction of different kinds of slots using a definitional

role that indicates the relationship that the slot bears to its parent unit; that Is, It enables
the user to specify such a role. This role can be used in the DISPLAY command to specify a
hierarchy for display that Is different from the generalization hierarchy (see Section
3.3.6).10

The following definitional roles are currently recognized by UE (Chapter 3): 11

PART-OF: The slot describes part(s) of the unit.

SUPER-UNIT: The inverse of PART-OF. The slot points back to the unit for which the parent
unit is a part.

PROPERTY: The slot is a property of the unit (an assertion about the unit).

9 This has been recognized by many researchers. Woods, for example, has
distinguished between assertional and structural links [Woods, 1975]).

10 The definitional role is implemented as an .optional field (Section 2.3.6) In a slot.
(The name of the field is DEFN.)

11 The extent of the recognition is minimal. UE recognizes abbreviations for them and
lists them as possibilities in response to ?. None of these roles are currently used anywhere
else in the UNIT Package.

10

RELATION: The slot describes a binary relation for the unit.

MANIFESTATION-OF: The slot describes a manifestation of the unit (e.g., In a passive sonar
system, a line-group is a manifestation of a platform in the acoustic data).

DOCUMENTATION: The slot forms part of the automatic documentation for the unit.

There are of course any number of other possibilities.12

2.3.4 Oatatype

The datatype field of a slot provides the primary information describing the type of
information that the value and default fields of a slot can contain. It Is similar to the notion of
datatypes in conventional programming languages. Hence, a link in the UNIT Package need
not go to another unit; it may go to an atom, integer, string, list, or to a value with some other
datatype.

Each datatype in the UNIT Package is defined as a unit with slots for standard

operations.13 Datatype units are the eventual source of information about how to acquire and
edit information that has a specific datatype, how to print values and restrictions of the
datatype, how to compare values of the datatype for equality, and so on. This Is
accomplished by attachment of procedures for these standard operations to datatype units
as the values of slots. The procedures are activated when datatype-related operations are
requested on the slots. (See Section 2.4.) Factoring datatype-related procedures this
way helps to provide a structured approach for adding new datatypes to a knowledge base.

2.3,5 Optional Fields

A slot may be annotated with any number of additional fields. A common use of such
fields is the attachment of procedures. Optional fields are inherited by progeny In a manner
similar to U slots, except that their values are also inherited. However, the value of an
optional field is not subject to any principle of nested restrictions and can be changed In any
offspring.

2.4 Procedural Attachment

The attachment of procedures to units Is one of the Ideas common to knowledge
representation languages. Several older languages (such as LISP) support arbitrary
attachment of procedures to data structures; the approach In knowledge representation
languages is more disciplined. This discipline in the UNIT Package has two main elements: (I)

12 The UNIT Package also uses a definitional role called EQUIVALENCE to label the
ANCHOR, CO-REFS, and NOT-CO-REFS slots of description and indefinite units.

13 They are all specializations of the unit DATATYPE In the BOOTSTRAP knowledge
base (Chapter 4).

.,

11

standardized points for attachment, and (Ii) an explicit purpose for each procedure--an
indication of when the procedure should be activated. For example, the purpose TO-GET

associated with a procedure that is attached to a slot Indicates to the UNIT Package that
the procedure is to be activated whenever the value of the slot is requested.

The UNIT Package provides three standard places for attaching procedures: (i) unit

attachment, (ii) slot attachment, and (iii) datatype attachment.14

Unit attachment is used for operations that act on the unit as a whole. A possible
example Is IF-DELETED, which would cause the associated procedure to be activated when
a unit was deleted. A procedure is attached to a unit by storing it as the value of a slot

whose name is the activation condition (e.g., IF-DELETED). 15

Slot attachment is used for operations on a particular slot of a unit (e.g., TO-GET,

described above). A procedure is attached to a slot by storing it as the value of a field
whose name is the activation condition (e.g., TO•GET).

Datatype attachment is used for operations on slots located throughout the knowledge
base that have values of a particular datatype (e.g., PRINT for value printing). A procedure
Is attached to a datatype by storing it as the value of a slot (of the datatype unit) whose
name is the activation condition (e.g., PRINT). Although datatype attachment has not been
reported in other knowledge representation systems, it has been used extensively In the
UNIT Package. Similar ideas were used In SIMULA [Dahl, 1966].

2.4. 1 Messages For Procedure Activation

Some terminology has been adapted from SMALLTALK [Goldberg, 1976] to describe
the activation of attached procedures. A procedure is activated by sending it a message with
a token that matches its purpose. This is an indirect form of procedure call--where the
purpose of the procedure is known to the caller but the name of the procedure need not be
known.

There are two basic forms of message: unit message and slot message. A unit message
is sent to a unit. The procedure that is the value of the slot whose name is the purpose token
of the message is invoked. If no such procedure exists, then an error Is generated.

A slot message is sent to a slot. In this case, the process Is potentially more complex.
First the UNIT Package looks for the procedure in the field of the slot whose name is the
purpose token. If there is no field of that name In the slot, then the package checks the
datatype unit for the slot. It looks for a procedure as the value of a slot whose name is the
purpose token. If there is still no procedure, then the UNIT Package looks for one In a unit
whose name is the slot name. In this case It looks for a procedure as the value of a slot
whose name is the purpose token. If no procedure can be found, then an .error Is generated.

14 Datatype attachment may be interpreted as a special case of unit attachment
because datatypes are represented as units in a UNIT Package knowledge base.

15 No such procedures are currently implemented In the UNIT Package.

12

Chapter 3

UE: The Unit Package Knowledge Base Editor

The Unit Editor, UE, provides a user interface to the UNIT Package. Under normal
circumstances, a user should never have to use any INTERLISP functions to create and

maintain a UNIT knowledge base.1

UE provides facilities for creating, examining, and modifying knowledge bases, as well
as facilities for combining information from a number of different knowledge bases. It Is
designed to be almost self-documenting and to provide aid to inexperienced users while at
the same time not bothering experienced users with over-prompting.

The idea of using an interactive editor for knowledge base construction and
management stems from a desire to ease the problem of transfer of expertise from a domain
expert to a program. The intent is to enable the domain expert to construct a knowledge
base by himself, without the necessity of directly Involving a computer scientist. There Is
evidence that this can both speed the expert-to-program transfer of expertise and improve
its accuracy [Friedland, 1979]. A speed improvement is possible when non-experts do not
have to be intimately Involved In describing each object in the knowledge base. An accuracy
improvement is possible when a computer scientist Intermediary can be bypassed. The
computer scientist is not necessarily an expert In the problem domain. When the knowledge
is complex and subtle, and its purpose may not be immediately apparent to a non-expert,
some distortion must inevitably result.

It is not clear that experts who are not computer specialists will always be able to
. logically formalize their knowledge of a domain. One of the most useful roles played by the
computer scientist \ntermediary is to help provide a logical organization for the knowledge of
an expert. It is no doubt true, however, that the expert-to-program transfer of expertise Is
easier if the expert can examine and understand the knowledge base as well as a computer
scientist can.

3. 1 Getting Started with UE

A UNIT knowledge base consists of at least two files: the UNITS file and the RELATIONS
file. The UNITS file contains all of the slot information for the units In the knowledge base. It
is used as an extended memory by the UNIT Package memory management procedures (see
Section 6.2). The RELATIONS file holds all other information about the units In the
knowledge base (the immediate ancestor and progeny in the generalization hierarchy, the
groups to which the unit belongs, etc.). A third file may also be used; the HASH file. This file
contains entries for slots with data type TEXT (see Section 4.3.11).

1. Accessing values in the knowledge base during planning or other use wlll require use
of the functions described in Chapter 6.

13

To get started, run UE from the UNITS system directory at your site (e.g., <Al> at
OREA). UE will ask you for the name of the knowledge base you wish to edit. You will be
given the choice of making a copy of the knowledge base to protect you from destroying It
through error.

You are allowed at this point to build a new knowledge base, either by starting with a
copy of an existing knowledge base, or by starting fresh. In most cases you will want to
start with the BOOTSTRAP knowledge base. it contains a number of primitive and
bookkeeping units that help to make the UNIT Package usable. Typing ? or HELP or SHOW

will give you assistance at this juncture.

You will then be given the chance to load any additional LISP functions that may be
special to your knowledge base. UE will try to find compiled files if you specify no file
extension for your LISP functions.

You will then be given the UE prompt of "UE:. 11 At this point if you type ? or HELP you
will get a list of allowable commands. Type !HELP for a brief explanation of the commands
(see Appendix A). These commands are explained in detail in Section 3.3.

3.1.1 Interaction With UE: General Information

The principle of ready assistance without bothering the experienced user with
continual unwanted advice controls all interaction with UE. The system prompts the user with
a symbol, word, or phrase whenever it is expecting input. The user may type ? or HELP at
any time for a list of allowable responses or response types, or In some instances may type
HELP for more detailed assistance. Flexibility is provided by permitting users to type ahead
instructions whenever they know what information the system will be requesting. If the
requested operation(s) can be completed without error, then the user will not be bothered
with unnecessary prompting.

Commands are generally recognized by the minimal set of characters that makes them
unambiguous with respect to other possible commands. For example, CR, CRE, CREA, CREAT,

and CREATE will all Invoke the CREATE command. Command names are also completed In
some versions of UE when <escape> or a delimiter (e.g., <space>, <return>) Is typed. You
may use ? to determine possible alternatives at any point. In addition, unit and slot names
are subjected to spelling correction and the system will complete unit and slot names that

are terminated with <escape> as long as this can be done unamblguously.2 UE makes no
distinction between small and capital letters.

The problem of providing for both top-down and bottom-up construction of a knowledge
base has been difficult to achieve in a conceptually clean fashion. The major problem Is that
if the user, operating in a top-down fashion, wishes to fill a slot with a pointer to another unit
that he has not yet defined, the normal consistency checking mechanism of the UNIT
Package cannot be applied. To facilitate operation in a top-down mode, a recursive feature
has been added. At any point, the user can make a recursive call to the top-level of UE (see

2 For some critical commands you will be asked to approve the correction.

14

Section 3.2.1). He may then define the needed unit, return via the normal exit
procedure, and fill in the slot as desired. This recursion may be carried out to as many levels
as desired and UE informs the user which level he Is In upon request and entry to a new level
and return to a previous level.

UE performs basic automatic documentation functions. It keeps track of the dates of
creation and last modification, as well as the names of the creator and last modifier. Every
unit also has a slot for a text description.

The UNIT Package always checks for violations before carrying out any operation and
prints an error message in case of trouble. The error messages Include an error number, a
message, and an Indication of the unit, slot, field, relation, function, role, group, or file thought
to be in error (or a list of several of these). The complete list of error messages Is shown In
Appendix C.

3.2 The User Profile

Another facility that allows UE to provide for different levels of user Is the user

profile. The system has built-In facilities for controlling the amount of Information provided
during certain interactions. For example, slots can be described in either a brief mode, where
only the value of the slot is printed, or a verbose mode where datatype and Inheritance role
information is also given. The mode chosen is dependent on the user profile.

The user profile is a small file stored on the user's directory, called UNITS.PROFILE. If
this file exists, then it is used to control the settings of a number of flags. The package also
allows a user to override the profile settings or generate a new profile (see the SET­

PROFILE command [Section 3.3.24]).

3.2.1 Control Characters

At any point in an editing session four special control characters are operational:

tK will recursively invoke UE at the top-level. For example, If you were creating a unit
and found that another unit you wanted to use did not yet exist, you could type tK, create
that unit, type OK and be back at the point you were when you had the problem. The system
will remind you of how deep you are in the recursion whenever you type tK or OK.

tE at any time in a subcommand will abort that subcommand and get you back to the
point at which that subcommand was given. (CAUTION: Only type tE to a prompt. Otherwise,
you may compromise the state of your knowledge base.)

tP at any time will show you where you are In UE. It will tell you the recursion level and
the name of the knowledge base. It will also show you basically what you are doing (e.g.,
what function you are in), in order of increasing scope. The following Is an example.

You are at recursion level 1
You are editing Knowledge Base TEMP-CIRCUIT under TOPS20 on OREA

Function: EDITATOM
Function: SLOTMSG
Editing Slot: B
Editing Unit: JONES
Network Edi tor

15

Network Edi tor (This appears twice because the user is at
recursion level I, and not the top-level.)

tO at any time will stop the current output.

If for any reason you are returned to INTERLISP {e.g., if you inadvertently type tD),

type (UE-TOP) to come back to UE.

3.3 UE Commands

3.3, 1 COMPACT

The COMPACT command allows you to unify the free blocks on your UNITS file {see
Section 6.2). It also allows you to expand the space allocated to each unit to allow for
future growth without reorganization of the data structure {by a factor between 1.0 and 6.0-
-a reasonable factor is 1.1).

3.3.2 CONSISTENCY

The CONSISTENCY command allows you to verify the consistency of the value
information in the slots of units in your knowledge base. You will be asked for the name of a
unit at which to start checking consistency. All units below this unit in the generalization
hierarchy will be checked. You will then be asked for the names of groups to which to
restrict the checking.

3.3.3 COPY

The COPY command allows you to copy a unit in the currently specified network to a
new unit. You will be asked for the parent of the new unit. You will also be asked for the
relation of the copy to the parent (depending on your proflle--see Section 3.3.24).

3,3.4 CREATE

The CREATE command allows you to create a new unit In the knowledge base. It will
ask you for the new name, a parent unit, and whether it is an INSTANCE or a
SPECIALIZATION (depending on your profile--see Section 3.3.24). It will then

16

automatically fill BOOKKEEPING slots the unit inherits from its parent (things like creation
date, description, etc.) asking you to fill slots that require your interaction (e.g., the DESCR

slot). If the unit is an instance, then you will also be asked to fill in terminal values for any R
slots that it inherits.

You will then be told that you can add new slots or edit existing slots with the EDIT
command (Section 3.3.8).

The prompt "CREATE:" indicates that the CREATE command Is waiting for Input.

3.3,5 DELETE

The _DELETE command allows you to delete a unit In the knowledge base. You will be
asked whether the progeny of the unit are also to be deleted.

If you choose not to delete the progeny, then all of the progeny of the· unit become
progeny of the parent of the unit (i.e., a level is removed from the generalization hierarchy}.

Notes: Any top-level slots in the deleted unit (i.e., slots that are defined In that unit) will
disappear from all of the progeny when the unit is deleted. In addition, the SHOWREFS

command (Section 3.3.25) is available to check for references to a unit In the· slots of
other units before it is deleted. This helps to eliminate possible Inconsistencies in the
knowledge base. It is, however, a slow process because It entails an exhaustive search of
the knowledge base.)

3.3.6 DISPLAY

The DISPLAY command allows you to get an overall view of the knowledge base.
Normally, it prints the names of units in the generalization hierarchy. You will be asked to
name a unit at which to start the display and whether you wish to display all units (BOTH-­

this is the default), just SPECIALIZATIONS, just INSTANCES, or just members of specific
GROUPS (in which case you will be asked for the name(s) of the group(s)). You will also be
allowed to specify a print level for the display; that is, the number of levels of the hierarchy
to be displayed.

You ore also. able to depart from the generalization hierarchy with the DISPLAY

command. You can specify that the display should go through particular slots, either by
naming the slots, or by naming definitional roles (i.e., the display will go through slots with
certain names, or slots that have certain definitional roles). To do this, use SLOTS or
DEFINITIONS In place of the options mentioned earlier.

The name of each unit is displayed with its progeny below it--lndentation indicating
level In · the hierarchy. Instances are displayed with an asterisk before and after.
Description units are followed by 11(Descr)11 and Indefinite units are followed by "(lndef}."
When you display a group, all units are followed by 11 +-." The display Is sensitive to your
profile (see Section 3.3.24).

The prompt "DISPLAY:" indicates that the DISPLAY command is waiting for Input.

3,3,7 DONE

17

The DONE command tells UE that you are finished for this session. You will be asked
whether the knowledge base is to be saved on disk.· If you respond affirmatively, the
knowledge base is saved and you are returned to the operating system. Otherwise you are
asked whether you wish to cancel the session. If you respond affirmatively, then the latest
versions of the UNITS, RELATIONS, and HASH files are deleted (i.e., the versions that were
made when you started UE) and you are returned to the operating system. Otherwise, you
are returned to INTERLISP with the current knowledge base still open.

OK is a synonym for DONE.3

3.3.8 EDIT

The EDIT command starts the slot editor. This editor controls the fundamental operation
of knowledge acquisition, that of manipulating slots within units. It allows you to examine and
modify units in the knowledge base. It will ask you what unit you wish to modify. The prompt
"EDIT:" indicates that you are dealing with the slot editor. The current slot editor commands
are described in the following sections. Type HELP for a brief explanation of the commands
(see Appendix B).

3.3.8. 1 CLASSIFY

The CLASSIFY command allows you to examine, add, and remove classifications
associated with the unit (i.e., groups in which the unit is a member). The prompt "CLASSIFY:"
means that the CLASSIFY command is waiting for input. The possible options are: ADD,

DELETE, PRINT, and DONE (OK). ADD (DELETE) will prompt you for the classification to be
added (deleted). You will also be given the option of adding (deleting) the classifications to
(from) the progeny of the unit.

3,3,8.2 CDEFAUL T

The CDEFAULT command clears the default value field of a slot. You will be asked for
the name of the slot and whether the def a ult field is to be cleared for the corresponding slot
in the progeny of the unit.

3 This is true almost universally in UE. The exceptions occur when dealing with
INTERLISP itself (e.g., returning to UE from INTERLISP must be done with OK--DONE will not
work).

3,3,8,3 CLEARVALUE

18

The CLEARVALUE command clears the value field of a slot. You will be asked for the
name of the slot. You will also be asked whether the value Is to be cleared for the
corresponding slot in the progeny of the unit.

3;3,8.4 COPY

The COPY command allows you to copy the value of a slot from another unit to the one
currently being edited. It will ask you for the name of the slot in the current unit which Is to
get the copy (you are allowed to create a new slot at this point) and then for the slot name
and unit name of the slot of which a copy is to be made. COPY does not copy the def a ult
and optional fields of the slot.

3,3.8.5 CREATE

The CREATE command allows you to add a new slot to the current unit. You will be
asked for the new slot name (it has to be unique In the unit), the datatype of the slot, the
inheritance role of the slot, and the definitional role (if you have specified that option In your
profile [see Section 3.3.24]). You will then be put irito the editor for the datatype you
specified. (See Section 4.3 for descriptions of Individual datatype editors associated
with datatypes In the BOOTSTRAP knowledge base.) Checks will be made to ensure that the
value you give for the slot is consistent with the Inheritance role (e.g., If you gave an
inheritance role of S you cannot give a restriction as a value).

3,3,8,6 DELETE

The DELETE command allows you to delete a slot in the unit. (The slot must have been
defined in the current unit.) You will be asked for the name of the slot you wish to delete.
The slot will also be deleted in all progeny of the unit.

3,3,8. 7 DISPLAY

The DISPLAY command lists the names of the slots in the current unit. The display Is
dependent on your profile (see Section 3.3.24).

3.3.8.8 DONE

The DONE command releases you from the slot editor and returns you to the top level
of UE. (OK is a synonym for DONE.)

3,3,8,9 EDIT

19

The EDIT command allows you to edit an existing slot. You will be asked for the name
of the slot you wish to edit and then you will be transferred to the datatype editor for the
datatype of that slot (see below). The slot editor makes sure that the changes you make
are consistent with the datatype of the slot, with the inheritance role of the slot, and with
its inherited restrictions. (You cannot, of course, change the value of S slots that have been
inherited, or of R or O slots that have been given terminal values In a higher unit In the
generalization hierarchy.)

One further series of command options can result during use of the EDIT command. If
you put a value into a slot that causes conflicts from above or below in the generalization
hierarchy--you violate a restriction inherited from above, or make a new restriction that
invalidates values stored below the unit--you will be given the option to change the slot
value for the unit you are editing or to change the conflicting values from above or below.

As a result of the changes you make, certain description or Indefinite units may become
extraneous. The slot editor keeps track of any description or Indefinite units that were
pointed at when you entered the datatype editor. If they are not pointed at when you exit,
the slot editor will ask if you wish them to be deleted. Some care must be exercised here
since the slot editor only keeps track of the fact that the slot just edited no longer points at
these units. They may, however, still be referenced by other slots in the current unit, or in
some other unit.

Individual Datatype Editors

In order to edit a slot value you are transferred to the datatype editor associated with
the datatype of the slot. A variety of datatypes has been created for the BOOTSTRAP

knowledge base (Chapter 4). Each of these datatypes has a specialized editor (SecUon
4.3). These datatypes have been provided to get the user started. Because datatypes
are generally domain-specific, he will more than likely wish to augment the set discussed in
this document. The procedure for doing this is discussed in Section 4.2. The user should
be forewarned that this entails a fair amount of effort. He must write procedures for editing,
printing, and so on.

3,3,8, 1 0 FIELD-EDIT

The FIELD-EDIT command enables you to add, delete, or edit optional fields of a slot
(i.e., fields other than value, default, inheritance role, and datatype). You will be asked for
the name of the slot whose fields you wish to edit. The prompt "fE0IT: 11 Indicates that the
Field Editor is waiting for Input.

The following field edit commands are available: CREATE, DELETE, EDIT, OK (DONE),
and PRINT. In all cases, you will be asked for the name of the field. CREATE allows you to
simply create a field. (You will not be asked to enter a value). You may give a field a value
with EDIT. (You may specify the name of new field to EDIT. The new fleld will be created
and you will be asked for a value.) When a field Is given a value, you are given the option of

20

propagating it to the progeny of the unit. DELETE allows you to delete a field. PRINT allows
you to print a field. (PRINT can be followed with ALL to print all optional fields.)

3.3.8, 11 !HELP

The !HELP command prints a list of slot editor commands with terse explanations (see
Appendix B). This listing can be aborted by typing ,o.

3.3.8.12 MSG

The MSG command enables you to send a message to a field of a slot. You will be
asked for the name of the slot and the token (i.e., the field name). When you enter the field
name, you may follow it with other arguments. For example, typing: MSG FOO THINK JOE

sends a think message to slot Joo; i.e., activates the procedure In the think field of the slot
or in the think slot of the associated datatype with the argument JOE. The prompt "SMSG: 11

indicates that the MSG commahd is waiting for input.

3,3,8.13 OK

The OK command releases you from the slot editor and returns you to the top level of
UE. (DONE is a synonym for OK.)

3.3.8.14 PRINT

The PRINT command allows you to print some or all of the slots in the current unit. You
will be given a "Print:" prompt. Type <return> or ALL to print all of the slots. Type T to
print all top-level slots. Type S, U, R, 0 to print all slots of that inheritance role. Type E to
print all slots except BOOKKEEPING slots. Type NEW to print all slots with new values (i.e.,
slots that have been defined by an ancestor of the unit but whose value has been defined In

the unit). Type <name> to print a slot of that name.4

If your user profile has been set to VERBOSE (see Section 3.3.24), then the
PRINT command will print the name of each slot, the inheritance role, the datatype, the name
of the unit in which it was originally defined, or ""'Top"' " If It Is a toplevel slot, the value, and
the names and values of all optional fields.

If your profile is set to BRIEF, then only the slot name and value are printed. The
def a ult field is printed only if a default value has been set and the value in the value field is
not terminal or your profile is set for DEFAULT. Not all slots are shown unless your profile
indicates that you are a hacker.

4 If the unit has a slot whose name corresponds to one of the above keywords, then
that keyword will not be operational.

21

3.3,8.15 !PRINT

The /PRINT command is the same as the PRINT command except that your profile Is
temporarily set to VERBOSE HACKER NO-WITH-NOTATION for a complete printout. (See
Section 3.3.24.)

3.3.8, 16 RENAME

The RENAME command allows you to rename a slot in the unit. You wlll be asked for
the old slot name and the new slot name. You can only make such a change for top-level .
slots. The name will also be changed in the progeny of the unit.

3.3.8.17 SETDEFAULT

The SETDEFAULT command allows you to set a default value for a slot. You will be
asked for the name of the slot and transferred to the the datatype editor for the datatype
of the slot .. The slot editor will check to ensure that the value you give is consistent with
the inheritance role and restrictions for the value of the slot, and Is a valid terminal value for
the datatype of the slot. (If you have specified a value-restriction as the value for the slot,·
then the default must obey that restriction; otherwise, it must meet any inherited
restrictions.) You will be given the option of propagating the default value to the progeny of
the unit.

3.3.8, 18 SHOWRELATIONS

The SHOWRELATIONS command displays the units that are related to the current unit
in the generalization hierarchy as GENeralization, PROTOtype, SPECiallzation, and INSTance.

3.3.8. 19 SORT

The SORT command sorts the slots in a unit. The possible criteria are: A, H, R, or O.

A: The slots are placed in alphabetical order.

H: The slots are placed in hierarchical order. This means that slots are ordered according to
the level in the generalization hierarchy from which they have been inherited. Slots lnh.erited
from the highest unit in the generalization hierarchy appear first. Slots Inherited from the
same unit are placed in alphabetical order.

R: The slots are placed in reverse hierarchical order.

0: The slots are ordered by the user. If you specify 0, you will be told the current order of
the slots and asked to specify a new order, one slot at a time. You may escape at any time
by typing DONE or OK, in which case the remaining slots will be left In their original order.

22

You are prompted each time with the name of the current next slot. Type <return> to
accept it, or type the name of another slot.

3.3,9 GROUP

The GROUP command allows you to perform operations on groups of units (see Section
2.1). The current GROUP operations are: COPY, CREATE, DELETE, DISPLAY, OK (DONE),

PRINT, and REMOVE.5

3,3,9, 1 COPY

The COPY command allows you to copy a· group. You will be asked for the name of the
group to be copied, and the name of the new group. New units will be created for each of
the units in the group to be copied, and the old units will be copied to them. Inter-unit
references will be fixed in the new group so that they refer to the new units.

3,3,9,2 CREATE

The CREATE command allows you to create a group of existing units. You will be asked
for the name of the group and the units that are to be its members. If the group already
exists, then you may add new units to it.

3,3,9,3 DELETE

The DELETE command allows you to delete all units In a group. You are asked for the
name of the group. You are then given the choice of deleting all units in the group and their
progeny, or just the prototype units. Finally, you are asked whether or not you wish to
confirm deletion of individual units.

If you have chosen not to delete all units of the group, then the slots of the remaining
units in the group are checked for references to units that no longer exist. References of
this type are cleared. (NOTE: This process only holds for the UNIT and LIST datatypes In
the BOOTSTRAP knowledge base.)

3.3.9.4 DISPLAY

The DISPLAY command allows you to display the names of all known groups.

5 Manipulation of some of the groups in the BOOTSTRAP knowledge base Is only allowed
when your profile indicates that you are a hacker (see Section 3.3.24).

3.3.9.5 DONE or OK

DONE or OK returns you to UE.

3.3.9.6 PRINT

23

The PRINT command allows you to print the names of the units in a group. You are
asked for the name of the group.

3,3.9. 7 REMOVE

The REMOVE command allows you to remove a group classification. You are asked for
the name of the group. It is removed from the classification list for all of its units.

3.3.1 0 !HELP

The !HELP command prints a list of UE commands with terse explanations (see
Appendix A). This listing can be aborted by typing ,o.

3.3.11 INSTANTIATE

The INSTANTIATE command changes a specialization to an instance. You are asked for
the name of the unit. instantiation is only possible if the unit has no progeny and has no R
slots without terminal values. (You can always use the slot editor (Section 3.3.8) to give
these slots terminal values before using the INSTANTIATE command.)

3.3.12 LISP

The LISP command transfers you to INTERLISP. OK returns you to UE. (This is one
place where OK and DONE are not synonyms. In addition, OK must be In upper-case,
because it is typed at INTERLISP Instead of UE.)

NOTE: You should be aware that automatic memory management (Section 6.2) is normally
in effect while you are interacting with the UNIT Package. This means that you must be
especially careful about the use of tE. its use at an unfortunate time could result In a·
trashed knowledge base. However, this control character is often essential while functions
are being debugged. Therefore, in order to enable Its safe use, a facility has been
incorporated to disable memory management. This is done by setting the global variable
UA.PFLG to NIL Reset it to T when you wish memory management to be reinstated.

3.3. 13 MATCH

24

The MATCH command prints a list of units that match a description. You are asked for
the name of the parent unit (i.e., the unit to use as the prototype for the units you want to
match). You are then asked whether you want to search all progeny of the prototype without
regard to group, or whether you want to limit the search to progeny In particular groups.

A description unit is created by this command to hold the description for the match.
You will then be asked to fill in the slots of the description and will be transferred to the slot
editor. (You may add slots as well as modifying the existing slots defined In the prototype.)

A match is deemed to occur when the slot values specified in the description unit are
consistent with the restrictions of the unit being matched. (Optional fields are ignored for
matching purposes.)

For example, you can say MATCH ORGANISM. This indicates that you want to return all
progeny of Organism that meet certain criteria. These criteria are specified by filling In the
slots of a description unit whose prototype is Organism. For example, if slot/ of Organism can
be filled with either RED or BLUE, and we set Its value to RED in the description unit, then
MATCH will return all progeny of Organism for whom slotl = RED.

3.3.14 MOVE

The MOVE command enables you to move a unit from one place In the generalization
hierarchy to another. You will be asked for a new parent and given the option of moving the
progeny of the unit.

If any conflicts exist between slots in the unit to be moved and slots of the new
parent, you will be informed. Slots that are inherited from the new parent take precedence
over slots with the same name in the unit to be moved (or its progeny). The offending slots
in the unit will not be lost. They will be copied into top-level slots with names of the form
11$$-<slotname>. 11

If you do not move the progeny, then all instances are deleted, and specializations
become specializations of the old generalization of the unit. Top-level slots In the unit are
deleted In its old specializations.

3.3. 15 MSG

The MSG command enables you to send a message to a slot of a unit. You will be asked
for the name of the unit and the token (i.e., the slot name). When you enter the slot name,
you may follow it with other arguments. For example, typing: MSG FOO THINK JOE sends a
think message to unit Foo; i.e., activates the procedure in the think slot of Foo with the
argument JOE.

3,3.16 ?MSGS

26

The ?MSGS command lists the tokens for procedures In a unit (I.e., the names of slots
that can respond to messages sent to the unit). You are asked for the name of the unit.

3.3. 17 NETWORK

The NETWORK command allows you to change the knowledge base you are working on.
It will close the current knowledge base and ask you for the name of the next knowledge
base you wish to work on. The dialogue Is similar to that encountered when you start UE.

3,3.18 OK

The OK command tells UE that you are finished for this session. You will be asked
whether the knowledge base is to be saved on disk. If you respond affirmatively, the
knowledge base Is saved and you are returned to the operating system. Otherwise you are
asked whether you wish to cancel the session. If you respond affirmatively, then the latest
versions of the UNITS, RELATIONS, and HASH files are deleted (I.e. the versions that were
made when you started UE) and you are returned to the operating system. Otherwise, you
are returned to INTERLISP with the current knowledge base still open.

DONE Is a synonym for OK.6

3,3, 19 PRINT

The PRINT command lets you see a single unit in detail. You are asked for the name of
the unit and the print options. _Type < return> or ALL to print All slots. Type T to print all
top-level slots. Type s, U, R, O to print all slots of that inheritance role. Type E to print all
slots except BOOKKEEPING slots. Type NEW to print all slots with new values (i.e., slots
that have been defined by an ancestor of the unit but whose value has been defined in the
unit). Type <name> to print a slot of that name.7

PRINT will show the group classifications (if any) of the unit and what unit is Its
generalization or prototype. If your user profile has been set to VERBOSE (see Section
3.3.24) then the name of each slot, the inheritance role, the datatype, the name. of the
unit in which it was originally defined, or ""Top'"' if it is a toplevel slot, the value, and the
names and values of all optional fields are printed. If your profile is set to BRIEF, then only
the slot name and value are printed. The default field is printed only if a default value has
been set and the value in the value field is not terminal or your profile is set to DEFAULT.

Not all slots are shown unless your profile indicates that you are a hacker.

6 This is true almost universally in UE. The exceptions occur when dealing with
INTERLISP itself (e.g., returning to UE from INTERLISP must be done with OK--DONE will not
work).

7 If the unit has a slot whose name corresponds to one of the above keywords, then
that keyword will not be operational.

3.3.20 !PRINT

26

The /PRINT command Is the same as the PRINT command except that your profile Is
temporarily set to VERBOSE HACKER NO-WITH-NOTATION for a complete printout. (See
Section 3.3.24.)

3.3.21 RECORD

The RECORD command enables you to make a recording of this session In a specified
file. For example, REC FOO.BAR makes a recording In file FOO.BAR. A subsequent REC

command stops the recording.

3.3.22 RENAME

The RENAME command enables you to rename a unit. You are asked for the present
name of the unit and the new name. You are then asked if .all references to the old unit In
the slots of other units are to be renamed as well. In any case, description and indefinite
units are correctly renamed and their DESCR slots are modified to reflect the change. (NOTE:
Checking references is a slow process. It necessitates a search through the entire
knowledge base.)

3.3.23 SAVE

The SAVE command causes the current knowledge base UNITS, RELATIONS, and HASH
files to be copied. It then returns you to UE.

3.3.24 SET-PROFILE

The SET-PROFILE command allows you to modify various UE flags that control some
UNIT Package operations. You will be prompted for a profile command. Current profile
commands are shown below. For each command that sets a flag, Its opposite Is shown In
parentheses and its effect is shown underneath.

ASK-XMIT (NO-XMIT)

You will be asked if you want values of slots that are changed to be propagated to all
progeny, including those for which the slots have more specific values. If you specify no
transmission, you will still be informed if a new value causes conflicts and asked to fix them
(with help).

BRIEF (VERBOSE)

When printing slots, print only the slot name, the value, and the optional fields. The
alternative is to print the slot name, inheritance role, datatype, the name of the unit In which
it was defined (or 1

111Top1111 if it is a top-level slot), the value, and the optional fields.

27

CRT (NO-CRT)

This setting may depend on your site. At some sites, CRT enables line-editing of all
input, NO-CRT disables it. At others, CRT sets up backspace for a display terminal, NO-CRT

sets up backspace for a hardcopy terminal. Check with your local UNIT Package programmer.

DEFAULT (NO-DEFAULT)

Always print the default field. The opposite is to print the default field only If a default
value has been set and the value in the value field Is not terminal.

DEFN (NO-DEFN)

Always prompt for a definitional role during slot creation. The opposite Is to never
prompt.

DONE or OK

Return to UE.

HACKER (USER)

Enable printing of all BOOKKEEPING and PRIMITIVE units and all slots whose datatype
units are members· of the HIDESLOT group by the DISPLAY and PRINT commands. The
opposite is to disable this printing.

NOISY (QUIET)

UE will Inform you about units and attached procedures that are transferred by the
TRANSFER command. The opposite is to make the transfers silently.

PRINT or SHOW

Print your current profile.

STORE

Store your current profile on a file called UNITS.PROFILE on your directory. This file Is
loaded each time you use the UNIT Package.

WITH (NO-WITH)

Use KRL-like with notation for printing description and and Indefinite units; that Is, print
the description in the following form: a Block with front • a panel with color = blue for
description units, or some Block with front = a panel with color • blue for Indefinite units. The
opposite is to print only the name of the description or indefinite unit (e.g., IX-1).

3.3.25 SHOWREFS

28

The SHOWREFS command shows all references to a unit In the slots of other units In
the knowledge base. You are asked for the name of the unit and whether the search Is to be
restricted to units in particular groups. SHOWREFS also notes references to any description
and indefinite units that were created from the specified unit. (Note that this command

- entails an exhaustive search of the knowledge base and is slow.)

- 3.3.26 SPECIALIZE

The SPECIALIZE command changes an instance into a specialization.

3.3.27 SPLITUNIT

The SPLITUNIT command allows you to take an existing unit and split it into parent and
child, giving you the option of which slots go into parent and which into child. You will be
asked to give the name of the unit to be split--this will become the chlld of the parent-child
pair--and the name to be given to the new unit. You will then be asked to specify If all top­
level slots are to move to the new parent (indicated by A), if none are to move (N), or if you
want to select which top-level slots are to move (0). If you choose the latter option,
SPLITUNIT will go through all of the unit's slots and allow you to choose which ones to m'ove.
(Non-top-level slots automatically appear in the new unit.)

3.3,28 SUMMARYFILE

The SUMMARYF/LE command allows you store a text summary of the current
knowledge base on a disk file. It will ask you for a unit with which to start (like the DISPLAY

command) and will produce a file with the selected units in the same format as that produced
by the PRINT command. You will also be asked for the number of days back to include a
WHATSNEW type report of changes to the knowledge base (see Section 3.3.31). (A
response of O indicates that no report is desired.) In addition, you may specify that only
specific groups of units are to be shown. Finally, you are given the option of printing only
slots that originate or are changed In each unit.

Both the slots shown and the format in which they are shown are dependent upon your
profile (see Section 3.3.24).

3,3.29 TRANSFER

The TRANSFER command allows you to move individual units from another knowledge
base into your current knowledge base. You are asked for the name of the other knowledge
base, the unit to be transferred, the unit In the current knowledge base that is to be its
parent (only if the parent of the unit does not exist in the current knowledge base), and
whether you wish the progeny of the unit to be transferred as well.

29

If the unit already exists in the current knowledge base, then the normal procedure Is
to add new slots and group classifications, but not to alter existing slots and group
classifications. This can lead to trouble when slots with the same name are defined
differently. You are therefore offered the option of remaking the unit (this cannot be done for
datatypes since they are required to effect the actual transfer).

Units in the slots of the unit you wish to transfer are also transferred. TRANSFER also
keeps track of units and procedures transferred. (This prevents the same unit from being .
transferred more than once if it is pointed to by several units that are transferred.) If you
transfer a unit with attached procedures, the procedures must be transferred by hand.

Unless QUIET has been specified in your profile (see Section 3.3.24), TRANSFER will
inform you of all tran�fers.

3.3.30 TSHOW

The TSHOW command shows units and attached procedures that have been transferred
from other knowledge bases to the current knowledge base, along with the names of the
knowledge bases from which they were transferred. If several units or attached procedures
with the same name are transferred from various knowledge bases, they are only shown as
being associated with the last knowledge base from which they were transferred.

3.3.31 WHATSNEW

The WHATSNEW command allows you to see what changes have been made recently to
a unit and all of its progeny in the current knowledge base. It will ask how many days back It
should check for changes and and the name of the unit at which to start the examination (all
progeny are also checked).

Chapter 4

BOOTSTRAP: An Initial Knowledge Base

ROOT

DATATYPE

ATOM

BOOLEAN

EXPR

INTEGER

INTERVAL
LISP
LIST
NUMBER

STRING

TABLE

TEXT

UNIT

CREATED

MODIFIED

CREATOR

MODIFIER

DESCR

Figure 2. The BOOTSTRAP Knowledge Base.

30

There are a number of units of such wide generality that almost anyone who builds a

UNIT knowledge base will want to have these units included. To provide for this need, an
initial knowledge base of very general units has been prepared. It is called BOOTSTRAP and
resides on the UNITS system directory This knowledge base contains a number of primitive
datatypes as well as units for automatic documentation. For any particular application, a user
can augment the set of datatype units.

4.1 The Basic Units

4.1.1 ROOT

ROOT is the top-level unit of any knowledge base. In the BOOTSTRAP knowledge
base, this unit contains the following documentation slots. These slots are then inherited by
all other units.

--- --- -- ------

31

SLOT ROLE DATATYPE

DESCR (U) <DESCR>
MODIFIER (U) <MODIFIER>
CREATOR (U) <CREATOR>
MODIFIED (U) <MODIFIED>
CREATED (U) <CREATED>

4.1.2 DATATYPE

DATATYPE is the generalization of units used as the datatypes in a knowledge base.
Every slot in every unit in the knowledge base has a datatype which must be one of these
units. Section 4.2 explains the addition of new datatypes to a knowledge base.

DATATYPE is a member of the HACKER and PRIMITIVE groups. It has the following
slots.

SLOT ROLE DATATYPE

COPY (U) <LISP>
DELETE (U) <LISP>
EDIT (U) <LISP>
EQUALS (U) <LISP>
PRINT (U) <LISP>
STRICTER (U) <LISP>
TERMINALVALUE (U) <LISP>
TEST (U) <LISP>
TRANSFER (U) <LISP>
UNITS (U) <LISP>

Every datatype (specialization of the DATATYPE unit) will respond to the messages:
COPY, DELETE, EDIT, EQUALS, PRINT, STRICTER, TERMINALVALUE, TEST, and TRANSFER.

The function of these slots and the arguments that are passed to the attached procedures
are discussed below.

In the following text, whenever we refer to a datatype Instance, we mean either a
terminal value or a value restriction with a particular datatype.

COPY: Invoke a procedure to copy an Instance of the datatype. This Is only necessary for
datatypes for which the INTERLISP function COPYALL is not sufficient (e.g., LIST and UNIT).
The arguments are shown below.

Arg1: Datatype instance to copy
Arg2: Slot
Arg3: Unit

32

DELETE: Invoke a procedure to delete an instance of the datatype. This is only necessary
for datatypes such that an INTERLISP deletion is not sufficient {e.g., LIST and UNIT). The
arguments are shown below.

Arg1: Datatype instance to delete
Arg2: T if instance is to be deleted without user interaction
Arg3: Slot
Arg4: Unit
Arg5: T if instance Is not really contained in Slot of Unit

EDIT: Invoke an editor to create an instance of the datatype. EDIT procedures are
expected to simply return the new value for the slot. The UNIT Package automatically
checks for consistency and deposits the value in the slot. This convention of not actually
depositing the value in the slot allows the datatype editors to be used In situations where
their editing expertise is required but the value is targeted for some storage place other
than a slot in a unit, for example, as part of some composite data structure. For those cases
where it is desirable that the datatype editor perform this checking, It can return the special
token NOTEST to inhibit this activity in the UNIT Package. The arguments are shown below.

Arg 1 : Data type instance to edit
Arg2: Restriction on value in Slot of Unit
Arg3: Slot
Arg4: Unit

EQUALS: Invoke a routine to decide if two instances of the datatype are equal. The
arguments are shown below. Unless NOTESTFLG is T, both Arg1 and Arg2 will be checked to
make sure that they are valid datatype instances. (If type checking fails, then EQUALS
procedures return NIL.)

Arg1:
Arg2:
Arg3:
Arg4:
Arg5:

Datatype instance 1 (value in Slot of Unit)
Datatype instance 2 (comparison value)
Slot
Unit
NOTESTFLG (T if type checking is not to be done)

PRINT: Print an instance of the datatype. The arguments are shown below.

Arg1: Datatype instance to be printed
Arg2: NOCRFLG (If T, do not terminate with <return>)
Arg3: Slot
Arg4: Unit
Arg5: POSLST (List of fallback character positions (see Section 5.7.5)

STRICTER: Invoke a procedure to decide whether an instance of a datatype satisfies a
restriction or whether a valid restriction for an instance of the datatype is more strict than
another restriction. Its arguments are shown below. STRICTER functions are expected to
return NIL if the restriction is met and a complaint string (which can be printed to explain the
violation) in case of error. STRICTER functions must obey the following rule:

Restriction A is STRICT ER than Restriction B if and only if
The set of Terminal Values STRICTER than Restriction A is
contained.in the set of Terminal Values STRICTER than
Restriction B.

33

In cases where a dummy restriction procedure is desired that does no checking, the routine
NILTEST is included in the UNIT Package. It always returns NIL

Arg1: Datatype Instance
Arg2: Restriction on value in Slot of Unit
Arg3: Slot
Arg4: Unit

TERMINALVALUE: invoke a routine to decide if an instance of the datatype Is a terminal
value. TERMINALVALUE routines are expected to return T if the value is a terminal value,
else NIL. In those cases where a dummy procedure is desired, the routine NOTEST Is
included in the UNIT Package. It always returns T.

Arg 1: Data type instance
Arg2: Not used
Arg3: Slot
Arg4: Unit

TEST: Invoke a routine to deci�e if a structure is a valid instance of the datatype.

Arg 1 : Data type instanc�
Arg2: Not used
Arg3: Slot
Arg4: Unit

TRANSFER: Invoke a routine to decide if the transfer of an instance of the datatype (by the
TRANSFER command [Section 3.3.29]) Implies that other units should also be transferred.
TRANSFER routines are expected to return a list of units that should be transferred
together with a flag (T or NIL) for each unit that indicates whether Its progeny should also be

- transferred. The list is of the form (... (Unit 1 Flag1) ...). The arguments are shown below.

Arg1: Datatype instance
Arg2: Not used
Arg3: Slot
Arg4: Unit

UNITS: Invoke a routine to return .a list of the units mentioned In the Instance of the
data type.

Arg1: Datatype instance
Arg2: Not used
Arg3: Slot

- Arg4: Unit

34

4. 1.3 Individual Datatypes

All of the individual datatype units are specializations of DATATYPE. They are all
members of the HACKER and PRIMITIVE groups.

4.1.3.1 ATOM

ATOM Is the datatype corresponding to INTERLISP atoms. Value restrictions are
allowed in the form of lists of atoms.

4.1,3,2 BOOLEAN

BOQLEAN has three possible values: True, false, and Unknown. No value restrictions
are allowed. In INTERLISP this corresponds to the literal atoms T, f I and NIL.

4. 1.3.3 EXPR

EXPR is the datatype for INTERLISP expressions. Value restrictions are allowed. At
present they are simply expressions that have been marked as value restrictions. An EXPR

is implemented as an INTERLISP list. The first element is T If the expression Is a terminal
value, NIL if a value restriction. The actual value of the EXPR Is given by CAADR of the list.

4. 1.3.4 INTEGER

INTEGER is the datatype for integers. Value restrictions are allowed in the form of lists
of integers or ranges of integers. In INTERLISP, an INTEGER Is implemented as either a
normal integer or a list of integers, or a list with R as the first element. Positive and negative
infinity are represented by the largest positive and negative Integers possible on the DEC-
10 or DEC-20.

4.1.3.5 INTERVAL

INTERVAL is the datatype for closed intervals bounded by two numbers. One-sided
intervals are also allowed. (The open side boundary is filled in with plus or minus Infinity, as
appropriate.) Value restrictions are allowed In the form of subintervals, where terminal values
must be a subset of the interval specified.

An INTERVAL is implemented as an INTERLISP list of three elements. The first element
is T if the interval is a terminal value, NIL if a value restriction. The remaining elements are
floating point numbers or integers. The second element is the lower bound. The third element
is the upper bound. Positive and negative infinity are represented by the largest positive
and negative floating point numbers possible on the DEC-10 or OEC-20.

4. 1.3.6 LISP

35

LISP is the datatype for INTERLISP functions. No value restrictions are allowed. LISP

has an additional PP slot (shown below) that contains a function for PRETTYPRINTlng an
INTERLISP function.

SLOT

pp

4. 1.3. 7 LIST

ROLE

(U)

DATATYPE

<LISP>

LIST is the datatype for lists. The list elements must all have the same datatype (which
can also be LIST). Value restrictions are allowed in that each of the list elements can be a
valid value restriction for the datatype of the list. LIST has the additional slots shown below.
GET-DATATYPE contains a procedure for returning the datatype of the elements of the list.
GET-ELEMENT contains a procedure for returning a particular element of the list. GET-LIST
contains a procedure for returning the list in INTERLISP form (i.e., UNIT Package
implementation tokens are stripped off). PUT-LIST contains a procedure for replacing a list
in a slot. (See Section 5.10 for more detailed discussion of these procedures.) A LIST Is
represented as an INTERLISP list of the form:
(TOKEN DATATYPE ELEMENT1 ELEMENT2 ... ELEMENTn).
DATATYPE is the datatype of the individual elements. TOKEN indicates how the list Is to be
interpreted (as a terminal value or value-restriction). The following token forms are
recognized.

<integer>: Terminal value lists that satisfy this value-restriction must have (Integer>
elements.

Lor (L <integer>): The list represents a terminal value. (The individual elements must all be
terminal values in this case.)

S or (S <integer>) or ONE or (ONE <integer>): The list represents a value-restriction.
The Individual elements may be either terminal values or value-restrictions. The
interpretation is that every element In a terminal value list must be STRICTER (according to
the datatype of the list) than some restriction element of this list.

ALL or (ALL <integer>): The list represents a value-restriction. The Individual elements may
be either terminal values or value-restrictions. The interpretation Is that that every
restriction element in this list must be satisfied (according to STRICTER for the datatype of
the list) by some element of a terminal value list.

The actual value of the LIST is given by COOR of the list.

36

SLOT ROLE DATATYPE

GET-DATATYPE (U) <LISP>

GET -ELEMENT (U) (LISP>

GET-LIST (U) <LISP>

PUT-LIST (U) <LISP>

4.1.3.8 NUMBER

NUMBER is the datatype for real numbers. Value restrictions take the form of lists of
numbers or ranges of numbers. In INTERLISP, a NUMBER is implemented as either a normal
floating point number {or integer) or a list of numbers, or a list with R as the first element.
Positive and negative infinity are represented by the largest positive and negative floating
point numbers possible on the DEC-10 or DEC-20.

4. 1.3.9 STRING

STRING is the datatype for strings. Value restrictions take the form of lists of strings.

4.1.3.10 TABLE

TABLE Is the datatype for tables. All values in the same column must have the same
datatype. The column names are arbitrary labels. Value restrictions are constructed by
defining the column datatypes and labels, but not the column values.

4. 1.3.11 TEXT

TEXT is the datatype for long discourse. No value restrictions are allowed.

4. 1.3. 12 UNIT

UNIT is the datatype used for units. Valid terminal values are unit names. Value
restrictions take several forms: One can restrict a slot value to be one of a list of units, one
of the progeny of a unit, an instance of a unit, a unit matching a specified description, an
indefinite unit, a unit mentioned by another unit, or a unit found in some slot of another unit.
(See Section 4.3.12 for more detailed discussion.)

37

4.1,3.13 BOOKKEEPING DATATYPES

CREATED, MODIFIED, CREATOR, MODIFIER, and DESCR are all special datatypes used
for automatic documentation. They are all members of the BOOKKEEPING group.

CREATED stores the creation date for a unit (as a string). It is also a member of the
HIDESLOT group. The EDIT slot contains a procedure that gets the day's date and time by
looking at the system clock.

MODIFIED stores the modification date of a unit (as a string). It Is also a member of
the HIDESLOT group.

CREATOR stores the creator of a unit (as a string). It is also a meber of the HIDESLOT

group. The EDIT slot contains a procedure that gets the name of the creator.

MODIFIER stores the name of the modifier of a unit (as a string). It is also a member of
the HIDESLOT group.

DESCR is used for text description slots.

All of the BOOKKEEPING datatypes have the following slot.

SLOT

USER-INTERACTION

ROLE

(U)

DATATYPE

<BOOLEAN>

If the value of this slot Is T, then the user will be prompted for a value for the
associated datatype Instance when It Is created.

4.2 Creating New Datatypes

To create a new datatype, do the following:

Create a new unit that is a specialization of DATATYPE. Then give values for the LISP

datatype slots: COPY, DELETE, EDIT, EQUALS, PRINT, STRICTER, TERMINALVALUE, TEST,

and TRANSFER (some of these can be ignored--examine the primitives In the BOOTSTRAP

knowledge base for details).

4,3 The Individual Datatype Editors

All of the primitive Datatypes In the BOOTSTRAP knowledge base have their own
editors that allow you to give terminal values or restrictions (depending on the role) for
instancess of those datatypes.

To exit from all of the datatype editors give the command DONE (or OK). If the value
given is legal (i.e., is a valid datatype instance and meets all restrictions Inherited from

38

above and currently imposed from progeny) you will move on to your next step of UE
interaction. Otherwise you will be told what is wrong and be given the chance to re-edit the
value.

4.3.1 The ATOM Editor

The ATOM Editor indicates Its presence by the prompt "AE:"

Current ATOM Editor commands are:

ADD
DELETE
HACKER
PRINT
SHOW
STOP or ABORT
UNDO
CLEAR
OK or DONE

Add New Atom
Delete Existing Atom
Invoke LISP EDITV (For Hackers)
Print Value
Show Inherited Restrictions
Abort the Edit
Undo Previous Command
Clear Value
Done

You may also 'type a single atom as the value, or a list of atoms as a value-restriction.
When entering a single atom that could be mistakenly recognized as a command, precede the
atom with"!".

4.3.2 The BOOLEAN Editor

The BOOLEAN Editor indicates its presence by the prompt 11BE: 11

Current BOOLEAN Editor commands are:

TRUE
FALSE
PRINT
CLEAR
OK or DONE

Set Value to True
Set Value to False
Print Value
Clear Value
Done

If no value is given, the value will be taken as a value-restriction allowing true or false.

4.3,3 The EXPR Editor

The EXPR Editor indicates its presence by the prompt "EE:"

Current EXPR Editor commands are:

HACKER or EDIT
PRINT
RESTRICTION
TERMINAL
SHOW
CLEAR
OK or DONE

Invoke LISP EDITV (For Hackers)
Print Expression
Expression is a Value-Restriction
Expression is a Terminal Value
Show Inherited Restrictions
Clear Value
Done

39

The first time you invoke EDITV, you will notice that the "value" In the edit buffer Is
(NIL). This simply makes it possible to call EDITV before a real value has been set. Ignore the
outer parentheses, and reset the NIL to whatever value you wish.

4.3.4 The INTEGER Editor

The INTEGER Editor indicates its presence by the prompt "IE:"

Current INTEGER Editor commands are:

LIST
RANGE
PRINT
SHOW
CLEAR
OK or DONE

Enter a List of Integers as a Value-Restriction
Enter a Range of Integers as a Value-Restriction
Print Value
Show Inherited Restrictions
Clear Value
Done

You may also give a single integer as a terminal value. For the RANGE command, -I Is
recognized as -INFINITY, and +I is recognized as +INFINITY.

4.3.6 The INTERVAL Editor

The INTERVAL Editor indicates its presence by the prompt "lnE:"

Current INTERVAL Editor commands are:

SUBINTERVAL n1 n2
PRINT
SHOW
CLEAR
OK or DONE

Enter a Subinterval as a Value-Restriction
Print Value
Show Inherited Restrictions
Clear Value
Done

You may also. type n1 n2 as a terminal value. For the SUBINTERVAL command, -I Is
recognized as -INFINITY, and +I is recognized as +INFINITY.

4.3.6 The LISP Datatype Editor

The LISP Editor indicates its presence by the prompt 11LlspE: 11

Current LISP Editor commands are:

EDIT
PRINT
STOP or ABORT
CLEAR
OK or Done

Invoke LISP EDITF to edit the function (For Hackers)
Print Value
Abort the Edit
Clear Value
Done

40

You may also type the NAME of the function. If the function name could be mistakenly
recognized as one of the commands, precede It with 11 1 11 •

If you type the name of an already existing function It will be taken as the value of the
slot. Otherwise you will be asked if you wish to create a function of that name and be put
into EDITF with a skeletal function of the name given.

4.3. 7 The LIST Editor

For constructing lists, a distinction is made between simple datatypes for which terminal
values can be given by a single string (e.g., ATOM, or STRING), and complex datatypes which
require a datatype editor to be accessed (e.g., LIST).

The LIST Editor indicates its presence by the "LE:" prompt.

Current LIST Editor commands are:

ADD e1 ... en

DATATYPE d
DELETE m
EDIT
EDIT m
HACKER
TERMINAL or LIST
REPLACE e 1 ... en

Add entries e 1 ... en to the list.
(They must be terminal values of simple
data types.)

Specify the list will contain Datatype d
Remove mth entry from the list
Add a new entry with the Datatype Editor
Edit mth entry with Datatype Editor.
Invoke LISP EDITV (For Hackers)
list is a Terminal Value (This is the default.)
Replace the current list entries with e1 ... en

(They must be terminal values of a simple datatype.)

RESTRICTION or
SUBLIST or ONE

ALL

PRINT
SHOW
CLEAR
OK or DONE

List is a Value-Restriction. Some of the entries
must be satisfied in a terminal value.

(This Is the default.)
List is a Value-Restriction. All entries must

be satisfied. (A terminal list will match this
list If every Item In the terminal list matches
at least one item In this list.)

Print Value
Show Inherited Restrictions
Clear Value
Done

41

You may also type an integer to specify how many Items the list must have (0 clears
the current length specification).

4,3,8 The NUMBER Editor

The NUMBER Editor indicates its presence by the "NE:" prompt.

Current NUMBER Editor commands are:

RANGE n1 n2
LIST
PRINT
SHOW
CLEAR
OK or DONE

Enter a Range as a Value-Restriction
Enter a List of Numbers as Possible Values
Print Value
Show Inherited Restrictions
Clear Value
Done

You may also give a single number as a value. For the RANGE command, -I Is recognized
as -INFINITY, and +I Is recognized as +INFINITY.

4,3,9 The STRING Editor

The STRING Editor Indicates its presence by the prompt "SE:".

Current STRING Editor commands are:

ADD
DELETE
HACKER
PRINT
SHOW
STOP or ABORT
UNDO
CLEAR
OK or DONE

Add New String
Delete Existing String
Invoke LISP EDITV (For Hackers)
Print Value
Show inherited Restrictions
Abort the Edit
Undo Previous Command
Clear Value
Done

42

You may also type a single string as the value, or a sequence of strings (separated by
spaces) as a value-restriction. (Quote marks are optional unless a string contains spaces.)
When entering a single string that could be mistakenly recognized as a command, precede
the string with"!".

4.3. 10 The TABLE Editor

For constructing tables, a distinction is made between simple datatypes for which
· terminal values can be given by a single string (e.g., ATOM, or STRING), and complex

datatypes which require a datatype editor to be accessed (e.g., LIST).

The TABLE Editor indicates its presence by the "TE:" prompt.

Current TABLE editor commands are:

ADD 11 d 1 ... In dn

CHANGE n Id
COLUMN I v1 ... vn
DEFINE 11 d1 ... In dn

ENTRY m i v

EDIT m i

HACKER
REPLACE m v1 ... vn

ROW v1 ... vn

PRINT
CLEAR
OK or DONE

4.3.11 The TEXT Editor

Add new columns with specified labels
and datatypes (simple datatypes)

Respecify the label and datatype of column n
Replace column i entries with v1 ... vn
Define a table with specified column labels

and datatypes
Replace a single entry In row m and column I

(must be a terminal value of a simple
data type)

Replace a single entry in row m and column I
with an entry generated with a datatype
editor

Invoke LISP EDITV (For Hackers)
Replace row m entries with v1 ... vn

(must be terminal values of a simple
data type)

Fill in a row of the table with entries
v1 ... vn (must be terminal values of a
simple datatype)

Print Value
Clear Value
Done

The TEXT Editor indicates its presence by the prompt "te: 11

Current TEXT Editor commands are:

EDIT e

HASH
STRING
PRINT
CLEAR
OK or DONE

Invoke System Text Editor (one of EMACS, VMACS, TV, or
SOS). EDIT with no argument Invokes same editor as
last time.

Convert string text to hashfile entry
Convert hashfile entry to string text
Print Value
Clear Value
Done

43

Or you may simply type text to the "te:" prompt. Each line of text will be
concatenated to the text that was entered previously. To go back and fix a previous line,
you will need to use the EDIT command. If the first word could be mistakenly recognized as a
command, precede it with "!"._To insert an arbitrary string, surround the Input line by 1111• If
you do not do this, then atoms are all that will be accepted; that Is, tabs, parentheses,
groups of spaces, and so on will be Ignored. (This will not prevent command recognition from
being attempted.)

In order to conserve space in memory, a hashfile facility has been added to the UNIT
Package. This facility enables you to store TEXT datatype slots on a hashflle. You are stlll
able to edit these entries, just as if they were represented as strings, but a distinct savings
In string space is realized. To convert an existing string TEXT entry to a hashflle entry, use
the HASH command. (If no hashfile exists, then one will be created.)

4.3. 12 The UNIT Datatype Editor

The UNIT Editor indicates Its presence by the prompt "UnE:".

Current UNIT Editor commands are:

CLEAR: Clear the current value.

SHOW: Show Inherited Restrictions.

EDIT: Edit the current value (if it is a unit).

!HELP: Print an expanded summary of the commands.

LIST: Specify that the unit is one of a list (e.g. Chevy Ford Cadillac Jaguar). The members of
the list-must be terminal unit names (i.e., they cannot be descriptions or restrictions).

NONE: No unit. Used to emphasize absence of a link.

OK or DONE: Done

PRINT: Print the current value.

44

11tl: Specify that the value is an Instance of a given unit or of one of its offspring (e.g. *I
Vehicle).

11tp: Specify that the value is an offspring (instance or specialization at some level) of a
given unit (e.g., *P Vehicle).

11tlND: Specify a value that is an Indefinite unit--a particular instance of some as yet

undetermined unit (e.g., $car-JJ--the car I saw). An indefinite unit Is created (I.e., a unit that
is a member of the INDEFINITE group). You are asked to name a prototype unit and are then
placed in the Slot Editor to fill in the slot values for a match. Three extra slots are added
(each with definitional role EQUIVALENCE): ANCHOR, CO-REFS, and NOT-CO-REFS. The
ANCHOR slot is filled if this unit Is ever equated with an instance. Its datatype is UNIT and
its initial value Is NONE. The CO-REFS slot is filled if this unit is equated to another indefinite
unit. It has datatype LIST and has the Initial value "Some of: UNITs:." The NOT-CO-REFS

slot is filled if this unit determined to be not-co-referential to another indefinite unit. It has
datatype LIST and has the initial value "Some of: UNITs:.11

Jll(D: Specify a value by describing the components of a unit (e.g., *D Vehicle). A description
unit (i.e., a unit that is a member of the DESCR group) is created. You are asked to name a
prototype unit and are then placed in the Slot Editor to fill in the slot values for a match.
Two extra slots are added (with definitional role EQUIVALENCE): CO-REFS and NOT-CO­

REFS. These slots are filled if this unit is determined to be co-referential or not-co­
referential to another unit. They have datatype LIST and initial value "Some of: UNITs:.11

Unlike indefinite units, description units are never anchored to a particular instance and do not
have an ANCHOR slot. They are mostly used for matching. Description units are defined to
be equal if they are co-referential or if they match. Descriptions can be printed in KRL-like
WITH notation (e.g., A Bacterium with gramstain .. negative). (This depends on your profile.
See Section 3.3.24.)

11tR: Specify an indirect reference to a unit by specifying an access path (e.g., Ref to
chromosome of Organism). This is useful when the method to get the name of the unit can be
given, but the unit name is not known (or the unit is not yet defined). The reference may be
(i) to the value of a slot in some other unit or (ii) to some unique unit in a group. Hence, you
are given the option of referring to a particular slot. You are then asked to specify a unit
and given the option of making the reference to one of its progeny Instead of to the unit
itself. in this case, you are given the option of limiting the search to units in a particular
group.

11tM: Specify an indirect reference by naming a unit that mentions it and specifying the
ancestor of the unit mentioned. This supports indirect references like The Culture mentioned
in Lab-Goal-3. it differs from the pathname references above in that (I) no slot is specified In
which to find the reference and (ii) an ancestor of the referent unit (e.g., Culture) Is
specified. Hence, you are asked to name the ancestor of the unit that is mentioned, and the
unit in which the unit of interest is mentioned. You are also given the option of specifying a
particular group of units.

You may also specify a unit by name. When entering a single unit that could be
mistakenly recognized as a command, precede the unit with"!".

46

Chapter 5

Functions In The UNIT Package

You may not always want to interact with UE to make alterations to a knowledge base.
The following functions are useful for manipulation of a UNIT knowledge base under program
control.

5.1 Functions That Operate On Knowledge Bases

5. 1.1 NETWORK? (FILENAME FLG)

NETWORK? returns information about knowledge base FILENAME according to the value
of FLG as follows:

CURRENT: T if FILENAME is the current knowledge base.

EXISTS: T if a knowledge base with name FILENAME exists.

FOREIGN: T if FILENAME contains a directory name and the directory name does not
correspond to that of current user.

MINE: Performs a directory search on the connected directory. Returns a list of the
knowledge bases that are found.

ANY: Performs a directory search through all of the accounts on the global list UA.USERS.

Returns a list of the names of the knowledge bases that are found (with directory names).

Nil: The name of the current knowledge base.

5. 1.2 OPENNETWORK (FILE FLG)

OPENNETWORK initializes the UNIT Package for the knowledge base named FILE. FILE
is expected to be. an atom corresponding to the name field of a TENEX/TOPS-20 file. (It
should not include any extension or version number.) A knowledge base consists of two flies
(plus an optional third file):

<FILE>.UNITS: The UNITS file contains all of the slot information for the units in the
knowledge base. It is used as an extended memory by the UNIT Package memory
management procedures (Section 6.2).

46

<FILE>.RELATIONS: The RELATIONS file holds all other Information about the units In the
knowledge base (the immediate ancestor and progeny in the generalization hierarchy, the
groups in which the unit is a member, the address of the slot information In the UNITS file, the
relative .time at which the slots of the unit were accessed, and a flag that Indicates whether
the unit has been modified since the last time it was written to disk).

<FILE>.HASH: The HASH file holds entries for the values of slots with datatype TEXT. (This
file is optional.)

If FLG = NOFNS, then the functions for the knowledge base are not loaded. This is
useful for situations where it is known that the functions have already been loaded (e.g.,
after a call to COPYNETWORK when a knowledge base is copied from another directory). If a
compiled version of the functions is available, it is loaded. Otherwise the source file of the
functions is loaded.

OPENNETWORK has no effect if the current knowledge base is open. If a knowledge
base is successfully opened, OPENNETWORK enables unit memory management and returns
the name of the knowledge base. Otherwise, it returns NIL.

5. 1.3 CLOSENETWORK (FLG)

CLOSENETWORK writes the current knowledge base out to disk. It has no effect if
there is no current knowledge base. In this case, it returns Nil. CLOSENETWORK normally
writes out the UNITS, RELATIONS, and HASH files, closes them, undefines the units in the
current knowledge base, disables unit memory management and returns T. If FLG = T,
CLOSENETWORK makes copies of the UNITS, RELATIONS and HASH files, then returns ready
for further operations on the current knowledge base. In this case, Its value Is the name of
the current knowledge base.

5.1.4 CANCELNETWORK ()

CANCELNETWORK cancels the current session. Operationally, this involves closing the
UNITS file and then deleting the most recent versions of the UNITS, RELATIONS, and HASH
files. This deletes all changes to the current network back to the previous CLOSENETWORK.
CANCELNETWORK also disables unit memory management. CANCELNETWORK has no effect If
no network is open. It returns T if it is successful, else NIL.

5.1.5 MAKENETWORK (FILE)

MAKENETWORK initializes the unit access functions for a new (and almost empty)
knowledge base in memory. It also enables unit memory management. FILE specifies the
name of the knowledge base. MAKENETWORK has no effect if a knowledge base is already
open. If successful, MAKENETWORK returns the name of the current knowledge base, else
NIL. The new current knowledge base Is defined with one unlt--the ROOT unit, with no slots
defined.

..

47

NOTE: Usually, the appropriate way to create a new knowledge base Is to start with a copy
of the BOOTSTRAP knowledge base as noted earlier.

5.1.6 COPYNETWORK (FROMFILE TOFILE)

COPYNETWORK makes a complete copy of all the relevant flles for one version of the
knowledge base. If both FROMFILE and TOFILE are specified, a new version of the TOFILE
knowledge base equivalent to the FROMFILE knowledge base will be created (I.e., the UNITS,
RELATIONS, and HASH files). If TOFILE = NIL, a new version of the FROMFILE knowledge base
is created. If FROMFILE is from another user's directory and TOFiLE = NIL, a knowledge base
of the same name will be created in the current user's directory. COPYNETWORK returns the
name of the knowledge base if successful, otherwise NIL. The HASH file Is actually rehashed
and not simply copied. This helps to remove accumulated garbage that may result from
editing text entries.

5, 1, 7 COMPAC T (FACTOR)

COMPACT unifies the free blocks on the UNITS file (see Section 6.2) and expands
the space allocated to each unit to allow for future growth (by a FACTOR between 1 .0 and
5.0--a reasonable factor is 1.1). COMPACT also rewrites the RELATIONS file to account for
the new disk addresses on the UNITS file. COMPACT returns the size of the free block on the
UNITS file (in bytes).

5,2 Functions That Operate On Units:

5.2. 1 UNIT? (UNIT)

UNIT? returns UNIT if it is the name of a unit in the current knowledge base and NIL
otherwise.

5.2.2 MAKEUNIT (UNIT RELATIVE RELATION CLASS)

MAKEUNIT creates a new unit. UNIT Is the name for the new unit, RELATIVE Is the name
of the unit that is to be the parent (generalization or prototype) of the new unit. RELATION Is
the proposed relation to RELATIVE, either SPEC or INST. CLASS, if given, is a group
classification (or list of group classifications) for the new unit. (In addition, the new unit will
inherit the group classifications of RELATIVE.) The new unit also Inherits the slots that appear
in RELATIVE. MAKEUNIT returns the name of the new unit if successful, otherwise NIL

5.2.3 DELETEUNIT (UNIT KEEPSPECFLG MSGFLG)

48

DELETEUNIT deletes a unit from the knowledge base. UNIT is the name of the unit. All
instances of UNIT are automatically deleted. The treatment of specializations of the deleted
unit depends on the value of KEEPSPECFLG. If KEEPSPECFLG = NIL, all specializations of UNIT
are deleted as well. If KEEPSPECFLG = T, DELETEUNIT will modify the knowledge base so
that specializations of UNIT become specializations of its parent. However, any slots that
were defined in UNIT will disappear from the specializations. If MSGFLG is T, then DELETE

messages will be sent to slots as appropriate. The value of DELETEUNIT Is UNIT If
successful, otherwise NIL.

5.2.4 RENAMEUNIT (OLDNAME NEWNAME FIXFLG)

RENAMEUNIT changes the name of a unit from OLDNAME to NEWNAME. It updates all
generalization hierarchy relations in the knowledge base. It returns NEWNAME as its value If
the name change was successful, and NIL otherwise. RENAMEUNIT correctly renames
description and indefinite units created from OLDNAME and fixes their DESCR slots. If
FIXFLG = T then all references to OLDNAME (and its corresponding description and Indefinite
units) in the slots of other units in the knowledge base are fixed. (NOTE: This Is a slow

process. It necessitates a search through the entire knowledge base.)

5.2.5 INSTANTIATE (UNIT)

INSTANTIATE converts UNIT to an instance of its parent If It is currently a
specialization. (This changes a definition of a class [i.e., branch of the generalization
hierarchy] to a definition of an individual.) The operation can only be accomplished If UNIT
has no progeny and no R slots that are not filled with terminal values. INSTANTIATE returns
UNIT if successful, otherwise NIL.

5.2.6 SPECIALIZE (UNIT)

SPECIALIZE converts UNIT to a specialization of its parent if It is currently an Instance.
{This changes a definition of an individual to a definition of a class [i.e., a branch of the
generalization hierarchy].) SPECIALIZE returns UNIT if successful, otherwise NIL.

5.2. 7 COPYUNIT (FROMUNIT TOUNIT)

COPYUNIT copies all of the information in FROMUNIT to TOUNIT. If TOUNIT is not
specified, a new unit name will be assigned (constructed from FROMUNIT) and the new unit
will be created. The value of COPYUNIT is TOUNIT if successful (or the constructed name of
the new unit if TOUNIT is NIL), otherwise NIL. (COPYUNIT correctly copies all datatypes.)

5,2,8 MOVEUNIT (UNIT PARENT PFLG)

49

MOVEUNIT moves UNIT so that PARENT becomes Its parent. If PFLG Is T then progeny
are also moved.

If PFLG is NIL, then all Instances are deleted, and speclellzatlons become
specializations of the old generalization of the unit. Top-level slots In the unit are deleted In
its old specializations.

If any conflicts exist between slots in UNIT and slots of PARENT, a message Is
displayed. Slots that are inherited from the new parent take precedence over slots with the
same name in the unit to be moved (or its progeny). The offending slots In the unit are not
lost. They are copied into top-level slots with names of the form 11$$-<slotname>."

5,2.9 SPLITUNIT (OLDUNIT TOPUNIT TOPSLOTS)

SPLITUNIT is used to divide a unit into two units--thus creating a new level In the
generalization hierarchy. After this operation a new unit (TOPUNIT) containing some of the
slots ofOLDUNIT will appear In the generalization hierarchy es the generalization of OLDUNIT.

OLDUNIT must be an existing unit in the knowledge base and be a speclallzatlon of
some other unit. (It cannot be an instance.) TOPUNIT must be a valid unit name but must not

· already exist in the knowledge base.

TOPUNIT will acquire all of the slots that were inherited from above by OLDUNIT plus all
of the slots in the list TOPSLOTS. Each slot in TOPSLOTS must be a top-level slot In OLDUNIT.
At the end of this operation, each of the slots in TOPSLOTS will be a top-level slot in TOPUNIT
and will be inherited by OLDUNIT.

All specializations and instances of OLDUNIT will remain unchanged except that slots in
TOPSLOTS will now be inherited from TOPUNIT instead of from OLDUNIT. OLDUNIT will become
a specialization of TOPUNIT and the old generalization of OLDUNIT will become the
generalization of TOPUNIT.

If any of the conditions above are not met, SPLITUNIT returns NIL and makes no
changes to the knowledge base. If successful, SPLITUNIT returns TOPUNIT as Its value.

5.2, 10 MAKEUNITNAME (PREFIX)

MAKEUNITNAME provides a sort of GENSYM for creating new unit names. This Is useful
for routines which must create new units as part of their processing. MAKEUNITNAME returns
as its value a unit name starting with the given PREFIX and followed by a number. For
example , (MAKEUNITNAME SAMPLE) would return SAMPLE2 If SAMPLE1 already existed as a
unit In the knowledge base. MAKEUNITNAME does not create the new unit; It only supplies a
name.

50

5.2.11 UNITNAMESORT (UNIT1 UNIT2)

UNITNAMESORT is used for sorting unit names. It returns T If UNIT1 should be placed
ahead of UNIT2 in a sorted list. UNITNAMESORT gives a more reasonable ordering for unit
names constructed by MAKEUNITNAME than normal alpha ordering (e.g. WIRE2 will appear
before WIRE19).

5,3 Functions For Computing Built-in Relations On Units

5.3.1 LISTRELATIVES (UNIT RELATION CLASS)

LISTRELATIVES returns a list of the names of units having a particular RELATION to UNIT
in the generalization hierarchy. RELATION may be one of the following: INST (for Instance),
PROTO (for prototype), GEN (for generalization) or SPEC (for specialization).

If the optional argument CLASS is given, only those units having that group
classification will be included.

IF RELATION is SPEC or INST, then a copy of the actual list of relatives Is returned by
LISTRELA TIVES.

5,3,2 GEN (UNIT)

GEN returns the name of the generalization of UNIT. If UNIT doesn't exist or has no
generalization (e.g., is an instance), GEN returns NIL

6.3.3 PROTO (UNIT)

PROTO returns the prototype of UNIT. If UNIT doesn't exist or has no prototype (e.g., Is
a specialization), PROTO returns NIL

6,3.4 PARENT (UNIT)

PARENT returns the prototype of UNIT if it Is an Instance or the generalization of UNIT if
. it is a specialization.

5.3.5 SPEC (UNIT CLASS)

SPEC returns a copy of the list of the immediate specializations of UNIT. If CLASS is
specified, only those specializations having that group classification are included.

C

::,

61

5.3,6 INST (UNIT CLASS)

INST returns a copy of the list of all instances of UNIT. If CLASS is specified, only those
instances having that group classification are included.

5.3. 7 SPEC* (UNIT CLASS)

SPEC" returns a list of all specializations of UNIT and all specializations of them
(recursively). In other words, it returns a list of all progeny of UNIT that are not Instances.
If the optional argument CLASS is given, only those units having that group classification are
Included.

5.3.8 INST* (UNIT CLASS)

INSP returns a list of all instances of UNIT and all Instances of Its specializations. If
the optional argument CLASS is given, only those units with that group classification are
included.

5,3.9 PROGENY* (UNIT CLASS)

PROGENY)IC returns a list of all specializations and instances of UNIT (to all depths). If
the optional argument CLASS is given, only those units having that group classification are
included.

5.3. 10 PROGENY? (UNIT)

PROGENY? returns T if UNIT has progeny. It is fast and generates no 11st structure.

5,3. 11 PROGENYCLASS? (UNIT CLASS)

PROGENYCLASS? returns T if UNIT has any progeny with group classification CLASS. It
generates no list structure.

5.3. 12 ANCESTOR? (UNIT ANCESTOR)

ANCESTOR? returns ANCESTOR if ANCESTOR is a (possibly distant) generalization of
UNIT, otherwise NIL for convenience, if UNIT Is an Instance, ANCESTOR? performs the test
for Its prototype.

'

5.3. 13 INST•? (UNIT INST)

62

INSP:? returns T if INST is a (possibly distant) instance of UNIT (I.e., an Instance of
UNIT or or an instance of a [perhaps distant] specialization of UNIT), otherwise NIL.

5,3, 14 GENLEVEL (UNIT ANCESTOR)

GENLEVEL counts the number of generations between UNIT and Its ANCESTOR. If
ANCESTOR is not given, the ROOT is assumed. This function may be used as a measure of
how specialized a unit is. If any error is detected, NIL is returned.

5.4 Functions That Pertain To Group Classification Of Units

5.4.1 CLASS? (UNIT CLASS)

CLASS? is used for inquiries about the group classification of a unit. If UNIT is the only
argument, then CLASS? returns as its value a list of all of the groups· to which UNIT belongs.
If the CLASS argument Is also specified, and Is an atom, then CLASS? acts as a boolean
test. If CLASS is a list, then CLASS? wlll return T If any atom In the 11st Is a group to which
UNIT belongs.

6.4,2 CLASSIFY (UNIT CLASS ONL YFLG)

CLASSIFY adds CLASS (which may be a list) to the group classification list for UNIT
(unless UNIT already has that classification). Unless ONLYFLG = T, CLASSIFY propagates
group classifications to all progeny of a unit. The value of CLASSIFY Is UNIT If successful and
NIL otherwise.

5.4.3 DECLASSIFY (UNIT CLASS ONLYFLG)

DECLASSIFY is the inverse of CLASSIFY. It takes the same arguments. DECLASSIFY
returns UNIT If successful and NIL otherwise.

5.4.4 COPYGROUP (FROMGROUP TOGROUP)

COPYGROUP is useful for copying groups of units. For each unit that is a member of
FROMGROUP (i.e., has FROMGROUP in its list of group classifications), COPYGROUP creates a
unit (using COPYUNIT [Section 6.2.7]) with group classification TOGROUP. Any pointers
between units in FROMGROUP are replaced by corresponding pointers to units in TOGROUP.

5,6 Functions That Operate On Slots

5.5. 1 SLOT? (SLOT UNIT)

SLOT? returns SLOT if it is the name of a slot in UNIT, and NIL otherwise.

5.5.2 MAKESLOT (SLOT UNIT ROLE DATATYPE)

53

MAKESLOT creates a new slot with name SLOT in UNIT and all of its progeny. ROLE Is
the inheritance role for the slot and DATATYPE is its datatype. (ROLE and DATATYPE Is
optional.) Since slots that are defined in a unit (termed top-level slots) using MAKESLOT will
appear in all of its progeny, MAKESLOT first checks whether the slot Is used in any of the
progeny of UNIT. (PROGENYSLOT? is used to check this [see Section 5.5.7].) If the
slot appears in progeny and there is a conflict in either ROLE or DATATYPE, then MAKESLOT
reports an error. MAKESLOT returns SLOT if successful, otherwise NIL

NOTE: MAKEUNIT (Section 5.2.2) automatically creates appropriate slots (Inherited from
ancestors) at the time a unit is created. Thus it Is not necessary for the user to call
MAKESLOT to create those slots that are already defined in the parent of a new unit.

5.5.3 DELETESLOT (SLOT UNIT KEEPFLG MSGFLG)

DELETESLOT deletes SLOT from UNIT and its progeny. This operation is valid only for
top-level slots. The extent of the deletion is controlled by KEEPFLG as follows:

NIL (Default case): Delete SLOT in all progeny.

T: Delete SLOT in UNIT but keep it in all progeny.

NOTSPEC: Delete SLOT in UNIT and its immediate Instances. Keep SLOT in specializations and
their progeny.

If MSGFLG is T, then DELETE messages will be sent to the slot as appropriate.

DELETESLOT returns SLOT if successful and NIL otherwise.

5.5.4 RENAMESLOT (SLOT UNIT NEWNAME)

RENAMESLOT renames SLOT as NEWNAME In UNIT and its progeny. This operation Is
valid only for top-level slots. RENAMESLOT detects an error if a NEWNAME slot already
exists in UNIT or In its progeny. RENAMESLOT returns NEWNAME If successful and NIL
otherwise.

5.5.6 SORTSLOTS (UNIT SLOTLIST SORTFLG)

54

No meaning is attached by the UNIT Package to the order in which slots appear in a
unit. It is sometimes convenient, however, for users to have the slots appear in a particular
order. SORTSLOTS changes the internal ordering of slots in UNIT according to SLOTLIST and
SORTFLG. (This changes the order in which they will be presented by LISTSLOTS [Section
5.5.6).)

The following methods for sorting the slots are provided:

SLOTLIST SORTFLG Effect

NIL NIL Alphabetical Order of Slots.
Given Ignored Order given in SLOTLIST.

NIL H Hierarchical ordering. (See b_elow.)
NIL R Reverse Hierarchical ordering.

Hierarchical ordering means an ordering of slots depending on the level In the unit
hierarchy from which they have been inherited. Slots are ordered so that those which are
inherited from the highest place in the generalization hierarchy appear first. SIQts Inherited
from the same unit are placed in alphabetical order.

SORTSLOTS returns UNIT if successful and NIL otherwise.

5.5.6 LISTSLOTS (UNIT FIELD VALUE)

LISTSLOTS returns a list of the names of all of the slots In UNIT having a FIELD with the
specified field VALUE. If FIELD = NIL, then LISTSLOTS simply returns a list of the names of all
of the slots in the unit.

A special case is recognized in the case that FIELD = ROLE, which makes this function
somewhat more useful. When FIELD= ROLE and VALUE Is a single role, LISTSLOTS returns all
slots for which (ROLE? SLOT UNIT VALUE) = T; that is, all slots having that inheritance role.
(The point is that the slots may have other roles too--so that the criterion Is membership and
not exact equality.) When VALUE is a list of roles, an analogous criterion Is used.

5.5.7 PROGENYSLOT? (SLOT UNIT FIRSTFLG)

PROGENYSLOT? returns a list of progeny of UNIT that have a slot with name SLOT.
Search is limited according to FIRSTFLG as follows:

NIL (Default case): List of all progeny having the slot.

T: Stop search as soon as any progeny is found having the slot.

TOPLEVEL: Return a list of all progeny in which the slot Is a top-level slot; that is, those
progeny in which the slot is first defined.

55

6.6,8 TOPLEVELUNIT? (SLOT UNIT)

TOPLEVELUNIT? returns the name of the ancestor in which SLOT In UNIT was defined. In
case of error (e.g., slot doesn't exist), TOPLEVELUNIT? returns NIL.

5.5.9 TOPLEVELSLOT? (SLOT UNIT)

TOPLEVELSLOT? returns T If SLOT is first defined in UNIT and NIL otherwise. In other
words, if the slot is inherited from a parent, TOPLEVELSLOT? returns NIL.

Both TOPLEVELUNIT? and TOPLEVELSLOT? can be used to determine whether a given
slot is first defined in a given unit. However, TOPLEVELSLOT? is more efficient for this
purpose because it only looks at the parent of the given unit Instead of tracing back through
an arbitrary number of ancestors.

5.5.10 INHERITEDSLOT? (SLOT UNIT)

If SLOT in UNIT Is directly inherited (i.e., its Inheritance role Is S) from either a prototype
or a generalization, INHERITEDSLOT? returns the name of the (possibly distant) ancestor In
which SLOT is defined. For the case of dual role slots--(8 R) or (S 0)--INHERITEDSLOT?
returns the name of the ancestor in which the S role was added. Otherwise It returns NIL
(Inherited slots cannot be modified unless changes are made in that ancestor.)

NOTE: INHERITEDSLOT? will return NIL for a top-level slot whose role is 8--on the basis such
a slot is not itself inherited. However, for each of the progeny of unit In which the slot Is
defined, INHERITEDSLOT? will return the name of the top-level unit.

5.6.11 UNCHANGEDSLOT? (SLOT UNIT)

If SLOT in UNIT is in NC format (see Section 6.3.3), UNCHANGEDSLOT? returns the
name of the master unit that is being tracked for the slot. If SLOT is not In NC format,
UNCHANGEDSLOT? returns NIL.

5,5.12 TRACKINGSLOT? (SLOT UNIT)

If SLOT in UNIT is tracking another unit, then TRACKINGSLOT? returns the name of that
unit, otherwise NIL. (This is an effective OR of INHERITEDSLOT? and UNCHANGEDSLOT?.)

5.5.13 SLOT-MENTIONS (SLOT UNIT CLASS SKPLST REFSFLG)

SLOT-MENTIONS returns a list of all of the units mentioned in SLOT of UNIT. If CLASS Is
specified, only those units having that group classification are Included. Units that are
members of the PRIMITIVE group (i.e., datatypes) are not Included. Units on SKPLST are

56

ignored. If REFSFLG is NIL, then references to DESCR and INDEFINITE units are traced to
their parent units. SLOT-MENTIONS checks the value and default fields of SLOT. (The optional
fields cannot be checked properly since they have no datatype. Hence atoms cannot be
distinguished from units.) SLOT -MENTIONS uses the UNITS procedure attached to the
datatype unit for SLOT to parse the fields.

5.5. 14 UNIT-MENTIONS (UNIT CLASS REFSFLG)

UNIT-MENTIONS returns a list of all units mentioned in the slots of UNIT. If CLASS is
specified, only those units having that group classification are Included. If REFSFLG Is NIL,
then references to DESCR and INDEFINITE units are traced to their parent units.

5.5.15 SHOWREFS (UNIT CLASS REFSFLG)

SHOWREFS returns a list of all units whose slots refer to UNIT. If CLASS is given, then
only units with that group classification are searched. If REFSFLG is NIL, then references to
DESCR and INDEFINITE units are traced to their parent units.

5,5.16 FIX-SLOTREFS (UNIT OLDNAME NEWNAME)

FIX-SLOTREFS changes all references to OLDNAME in the slots of UNIT to be references
to NEWNAME.

5,6 Functions That Operate On Fields

5,6.1 FIELD? (FIELD SLOT UNIT)

FIELD? returns FIELD if it is a field of SLOT in UNIT. Otherwise It returns NIL.

5.6.2 LISTFIELDS (SLOT UNIT NOT-FIXED•FIELDS·FLG)

LISTFIELDS returns a list of the fields for SLOT in UNIT. If NOT-FIXED-FIELDS-FLG = T,
then only the optional fields are included.

5.6.3 MAKEFIELD (FIELD SLOT UNIT)

MAKEFIELD creates FIELD in SLOT of UNIT. An error results If FIELD corresponds to one
of the permanent fields or is already a field of SLOT in UNIT. (Since PUTFIELD (Section
5.6.6) will create a field if it is not there already, this function is not strictly necessary
and is included only for completeness.)

6.6.4 DELETEFIELD (FIELD SLOT UNIT)

57

DE.LETEFIELD removes FIELD from SLOT of UNIT. An error occurs If this Is attempted for
a permanent field.

5.6.5 GETFIELD (FIELD SLOT UNIT)

GETFIELD returns the value stored in FIELD of SLOT In UNIT. It works for both
permanent and optional fields. GETFIELD does not copy values as they are returned from
fields of a slot. For most cases this is no concern. However, when these values are list
structures, the user should copy them before altering them. Failure to do so can result in
bizarre effects--such as simultaneous changes in the ancestor units that contain the slot.

5.6.6 PUTFIELD (VALUE FIELD SLOT UNIT PFLG)

PUTFIELD puts VALUE in FIELD of SLOT in UNIT. It works for permanent and optional
fields except for the NAME and ROLE fields. Special checking Is performed for the data type
field. PUTFIELD returns FIELD if successful and NIL otherwise.

PFLG is an optional argument that controls forwarding of the field value to progeny. If
no PUTFIELD operation on progeny has been performed, they always inherit all of the fields
from the corresponding slot In an ancestor (i.e., the slot in the ancestor is tracked). Once
they have been changed, then value, default, and optional fields do not get forwarded unless
PFLG = T.

5,6,7 GETROLE (SLOT UNIT)

GETROLE returns the inheritance role list for SLOT in UNIT.

5.6.8 ROLE? (SLOT UNIT ROLE)

Without the optional ROLE argument, ROLE? is the same as GETROLE. If ROLE is given,
ROLE? returns T if ROLE is contained in the Inheritance role 11st for SLOT In UNIT.

5.6.9 PUTROLE (ROLE SLOT UNIT)

PUTROLE adds ROLE to the inheritance role list for SLOT in UNIT and its progeny if it Is
not there already. An error occurs if an attempt is made to set two mutually exclusive roles
for SLOT or if SLOT is not a top-level slot in UNIT. When the roles R or O are set, the
corresponding slots in progeny are initially marked as unchanged (NC format--see Section
6.3) so that their fields will track the fields in this unit. PUTROLE returns ROLE if
successful and NIL otherwise. An S role cannot be added with PUTROLE unless It Is done at
the same time as an R or O role. The CHANGEROLE function handles this case.

5.6. 1 0 CHANGEROLE (ROLE SLOT UNIT)

58

CHANGEROLE changes the existing Inheritance role list of SLOT In UNIT. CHANGEROLE
returns ROLE if successful and NIL otherwise.

If ROLE is identical to the existing role, no operation takes place.

If ROLE = S and the existing role is R or 0, then the S role Is added to UNIT and all of
its progeny. The corresponding slots in the progeny are changed to track the SLOT in UNIT.
Once the S role has been added, INHERITEDSLOT? (Section 5.5.10) will return UNIT for SLOT
in the progeny. Any attempt to independently change the value fields of corresponding slots
in the progeny will result In an error unless DELETEROLE (see below) Is first used to delete
the S role from SLOT in UNIT. This CHANGEROLE operation is valid on a slot at any level.

If ROLE = O and the existing role is R (or vice versa), then the role change Is made In
UNIT and in all progeny. All corresponding slots in the progeny that are marked as unchanged
or inherited retain these markings (see Section 6.3). This is valid only for a top-level slot.

If ROLE = S and the existing role is U, then all corresponding slots In the progeny are
made to track SLOT in unit. They become inherited slots (see Section 6.3). This Is only
valid for a top-level slot.

Other Combinations: If ROLE = R or 0 and the existing role is U or S, or If ROLE = U and
the existing role Is S, R, or 0, then the role is changed In UNIT and In all progeny (and slots
are remade to be tracking slots or standard slots as required by the case (see Section
6.3). This Is only valid for a top-level slot.

NOTE: This is a very primitive function for changing roles and does not take Into account any
of the changes that may be necessary for consistency of restrictions or use of terminal
values. The functions EDITSLOT, EDITBADVALUES and CLEARBADVALUES (see Section 5.7)
provide more assistance when major knowledge base changes are being performed.

5.6. 11 DELETEROLE (ROLE SLOT UNIT)

DELETEROLE deletes ROLE from the inheritance role list for SLOT in UNIT if it Is there.
Except in the special case where the role being deleted is S from a slot having S and
another role, an error message is generated if the slot is not a top-level slot. Deleting a role
will often have very widespread consequences for the progeny of the current unit as
explained in the following table. DELETEROLE returns ROLE if successful and Nil otherwise.

S (Special Sand R or Sand O case):
The S role is deleted from SLOT in UNIT. All of the corresponding slots In the progeny of

UNIT are marked as unchanged (see Section 6.3).

S, R, 0, U:

ROLE is deleted from SLOT in UNIT and all of Its progeny. The value, default, and
optional fields are set to NIL in UNIT and its progeny. If some Instance of SLOT In one of the

59

progeny has a dual role (S and R or S and 0), the S role is deleted along with the other role.
At the conclusion of this operation, none of the instances of SLOT In the progeny will be
tracking SLOT in UNIT.

NOTE: The function DELETESLOT (Section 5.5.3) will remove a slot from a unit and all of Its
progeny. Hence, the last case above is expected to have only llmlted utlllty.

5.6.12 DATATYPE? (SLOT UNIT DATATYPE)

DATATYPE? returns the datatype of SLOT in UNIT. If DATATYPE Is not given, this Is
equivalent to the appropriate call to GETFIELD. If DATATYPE Is given, then DATATYPE?
returns T if the datatype of SLOT Is DATATYPE and returns NIL otherwise.

5, 7 Functions For Operating On Values

5.7.1 GETVALUE (SLOT UNlt)

GETVALUE returns the value for SLOT in UNIT. When SLOT has a simple stored value, It
is simply returned. GETVALUE has been extended to allow for virtual slots and computed
values as follows:

Case

Simple Stored Value

SLOT exists, has no
value, but has a
TOGET field

SLOT doesn't exist,
but there is a
procedure named SLOT
(i.e., a procedure
with the same name
as the slot).

SLOT doesn't exist,
but there is a unit
with the same name
as the slot

Action

Return the value.

Invoke the procedure in the TO-GET field
· and return its value. (Note that if
SLOT has a value, this procedure will
not be called.) If the value of the TO-GET field is
an atom, it is applied as follows:
(APPLY"' VAL UNIT). If it is a list, it Is assumed
to be of the form (FN ARG1 ARG2 ...), and is
applied as follows:
(APPLY (CAR VAL) (APPEND (CDR VAL) (LIST UNIT))).

Invoke the procedure and return the
value: (APPL v� SLOT UNIT).

Invoke GETVALUE recursively on slot
named VALUE In that unit. This could
result in a constant or a computed value
being returned.

60

GETVALUE does not copy values as they are returned from a slot. For most cases this
is of no concern. However, when these values are list structures, the user should copy them
before altering them. Failure to do so can result In bizarre effects--such as simultaneous
changes in the ancestor units that contain the slot.

5.7.2 PUTVALUE (SLOT UNIT VALUE NOTESTFLG ROLE TV PFLG)

PUTVALUE puts VALUE in the value field of SLOT in UNIT. Unless NOTESTFLG = T,
PUTVALUE verifies that the inheritance role and terminal value requirements are satisfied
before putting VALUE in the value field of the SLOT in UNIT.

If ROLE is given it is used as the inheritance role. If TV= T, then VALUE is assumed to
be terminal, else it is checked. If PFLG = T then the value is propagated to the progeny of
the unit.

If VALUE is a terminal value and the role Is either R or 0, PUTVALUE adds the role S
using CHANGEROLE (Section 5.6.10) if the role S is not set already. Conversely, if VALUE is
not terminal and the role is S and either R or 0, PUTVALUE will delete the S role. This action
assures that slots having terminal values will consistently also have the role S.

PUTVALUE returns SLOT if successful and NIL otherwise. If there is an error, the value
in the slot is not changed.

5.7.3 GETVORD (SLOT UNIT FASTFLG)

GETVORD typically returns the def a ult value for SLOT in UNIT if the value field is not
filled. More precisely, its operation depends on FASTFLG as follows:

FASTFLG = NIL (usual case): If the value of SLOT Is terminal (not a value-restriction), then
that value is returned. Otherwise the default value of SLOT is returned.

FASTFLG = T: GETVORD returns (OR VALUE DEFAULT); that Is, it does not test whether the
value of SLOT Is terminal.

5.7.4 EDITSLOT (SLOT UNIT FAKERESTRICTION FAKEVALUE NOEFLG)

EDITSLOT causes the value of SLOT in UNIT to be edited interactively, using the editor
associated with the datatype of the slot. If the optional argument FAKERESTRICTION Is
given, it will be used in place of the actual restriction on the slot. If the optional argument
FAKEVALUE is given, then it will be passed to the datatype editor in place of the value in the
slot. If NOEFLG is T, then the datatype editor is not actually called. Instead, the existing
value is checked for consistency as a value for SLOT In UNIT. (This Is used by the
CONSISTENCY command [Section 3.3.2].)

EDITSLOT first invokes the editor associated with the datatype to acquire the value in

81

the slot or permit the user to modify the existing value. After the local editor has returned a
new value, EDITSLOT checks the new value for possible conflicts with restrictions inherited
from above in the generalization hierarchy. (This extra checking is not done if the editor
returns the value NOTEST.)

After checking for conflicts from above, EDITSLOT then checks for conflicts below. If
the value in the slot conflicts with the corresponding values in progeny, EDITSLOT again
interacts with the user. He may display the conflicts, re-edit the slot, re-edit the progeny In
which there are conflicts, or clear all of the slots in progeny in which there Is a conflict.
EDITSLOT also verifies that the values left in instances are terminal values.

6.7,5 PRINTSLOT (SLOT UNIT FAKEVALUE NOCRFLG POSLST)

PRINTSLOT causes the value of SLOT in UNIT to be printed using the printing routine
associated with the datatype of the slot. If FAKEVALUE Is given, it is passed along to the
datatype printing routine instead of the actual value in the slot. If NOCRFLG is given, It is
also passed along to the datatype printing procedure. By convention, the datatype printing
routines terminate printing with a carriage return unless NOCRFLG = T. POSLST, if given, is
also passed to the datatype printing procedure. By convention, these routines expect
POSLST to be a list of fallback character positions. [When a datatype printing procedure Is
called, and the current position is too large to allow printing any integral part of the instance
of the datatype on the current line without overflow, then the datatype printing procedure
tries to fall back to successive character positions found on POSLST (in order of decreasing
magnitude) to find a position that does allow non-overflow printing.]

5.7,6 GETRESTRICTION (SLOT UNIT ROLE)

GETRESTRICTION returns the restrictions on the value of the SLOT in UNIT. If ROLE Is
given, it is used in place of the inheritance role of SLOT. Restrictions are located depending
on the inheritance role as follows: If the role Is U or SLOT is a top-level slot, then NIL Is
returned. Otherwise, the value of SLOT in the parent of UNIT Is returned.

5.7.7 TERMINALVALUE? (SLOT UNIT FAKEVALUE)

TERMINALVALUE returns T if the value of SLOT in UNIT Is a terminal value, NIL If it is a
value restriction. If FAKEVALUE is given, the test is performed as if FAKEVALUE were the
value in the slot. TERMINALVALUE invokes the terminal value routine associated with the
datatype of the slot to perform the test.

6,7,8 CHECKRESTRICTION (SLOT UNIT VALUE RESTRICTION ROLE)

CHECKRESTRICTION returns NIL if VALUE satisfies the restrictions on the value field of
SLOT in UNIT and the locally generated restriction error message otherwise.

62

The arguments VALUE, RESTRICTION and ROLE are optional. If VALUE is given; then
CHECKRESTRICTION returns the message that would occur if VALUE were the value in SLOT.
Similarly, if RESTRICTION is given, it is used in place of the restrictions returned by
GETRESTRICTION. Finally, if ROLE is given, then It is used in place of the actual inheritance
role of SLOT. CHECKRESTRICTION immediately returns Nil for Sand U roles.

CHECKRESTRICTION uses SLOTMSG (Section 6.8.2) to check for conflicts If the
restriction is not NIL by sending a STRICTER message that activates the attached
procedures that specialize in the restrictions for the particular datatype.

NOTE: To help distinguish between the case where the value satisfies the restrictions (NIL
returned) and an error occurs during the operation of CHECKRESTRICTION (NIL returned),
CHECKRESTRICTION first sets the UNIT Package global error number, UA.ERRNO, to NIL
UA.ERRNO will still be NIL only after an error-free operation.

5.7,9 PROGENYRESTRICTION (SLOT UNIT RESTRICTION FIRSTFLG ROLE)

PROGENYRESTRICTION tests for conflicts below. In other words, PROGENYRESTRICTION
tests whether a value restriction in SLOT of UNIT conflicts with values in the corresponding
slots in the progeny of UNIT.

If RESTRICTION is given, then it is used rather than the contents of the value field of
SLOT in UNIT. Similarly, if ROLE is given, then it is used In place of the Inheritance role of
SLOT In UNIT.

PROGENYRESTRICTION returns as its value a list of the next generation of progeny for
which RESTRICTION would cause a conflict. If FIRSTFLG = T, PROGENYRESTRICTION stops Its
search tor conflicts as soon as it has found the first conflict. If there are no conflicts,
PROGENYRESTRICTION returns NIL.

Like CHECKRESTRICTION (and for the same reason), PROGENYRESTRICTION first sets
UA.ERRNO to NIL.

5, 7, 10 CLEARBADVALUES (SLOT UNIT RESTRICTION)

CLEARBADVALUES causes all slots corresponding to SLOT in the progeny of UNIT to be
examined to see whether they conflict with the value In SLOT in UNIT. If the optional
argument RESTRICTION is given, it is used in place of the actual value of SLOT In UNIT. After
the corresponding SLOT in progeny of UNIT are checked, values that do not satisfy the
restriction are set to NIL. CLEARBADVALUES returns SLOT if Its operation is successful and
NIL otherwise.

---- ---- --------------------------

5. 7. 11 EDITBADVALUES (SLOT UNIT RESTRICTION)

63

EDITBADVALUES causes an appropriate editor to be invoked on all slots corresponding
to SLOT in the progeny gf UNIT that conflict with the value of SLOT In UNIT. If the optional
argument RESTRICTION is given, It Is used In place of the actual current restriction In SLOT.

EDITBADVALUES returns SLOT if the operation Is successful and NIL otherwise.

6,8 Message Functions

5.8.1 UNITMSG (UNIT TOKEN ARG1 ... ARGN)

UNITMSG sends a message to UNIT. The message handler is assumed to be the value
of the slot named TOKEN in UNIT. If the value is not a procedure, then the value Is simply
returned. If the value is a procedure, then UNITMSG applies the procedure with the
arguments ARG1 ... ARGN.

UNITMSG returns as its value the value of the procedure activated as described. In
case of error, UNITMSG generates a diagnostic message and returns NIL. It Is usually useful
for attached procedures to return a non-NIL value after a successful execution. However, to
help distinguish a NIL value returned from an error condition UNITMSG also first sets
UA.ERRNO to NIL.

5.8.2 SLOTMSG (SLOT UNIT TOKEN FAKEVALUE ARG2 ARGUST)

SLOTMSG is responsible for sending a message to a particular slot. SLOTMSG looks for
the procedure (or value) indexed under TOKEN as follows:

1. In a field named TOKEN of SLOT in UNIT. (Must be an optional field).

2. In the slot named TOKEN of the datatype unit corresponding to SLOT of UNIT.

3. In the slot named TOKEN of the unit named SLOT.

In performing this search, if a value is found that is not a procedure, SLOTMSG simply
returns that value. Otherwise, the procedure is applied to the arguments described below:

Arg1: VALUE
Arg2: ARG2
Arg3: SLOT
Arg4: UNIT
Arg5-N: Elements of the list ARGUST.

It is sometimes useful to send a message as If the value in the slot were some
hypothetical value. For example, if one might want to check the effects of an attached
procedure for checking restrictions on some proposed new value for the slot. To do this, the

64

FAKEVALUE argument may be used. If FAKEVALUE is given; SLOTMSG will deliver its message
with the first argument set to FAKEVALUE instead of the actual value in the slot.

Like UNITMSG, SLOTMSG returns as its value the value of the procedure activated as
described. In case of error, SLOTMSG generates a diagnostic message and returns NIL.
Because of this, it is usually helpful if attached procedures return some non-NIL value after a
successful execution. However, to help distinguish a NIL value returned from an error,
SLOTMSG also first sets UA.ERRNO to NIL

5.8.3 MSGHANDLER? (SLOT UNIT TOKEN)

The message handling mechanism described above typically involves a search process
to locate the procedure that should be activated by a given message. In most cases the
procedure is located in the datatype unit for the slot but it can also be found in a field
associated with the slot. MSGHANDLER? carries out this SLOTMSG search process for SLOT
of UNIT and returns as its value the name of the unit that has the procedure. MSGHANDLER?
returns NIL if no procedure Is found. MSGHANDLER? can thus be used to determine whether
SLOT in UNIT can respond to a TOKEN message.

5.9 Functions That Operate On Datatypes

These are some basic retrieval functions for the UNIT and LIST datatypes. Some of
them operate on slots, some operate on units, and others operate on descriptions. Some
search the knowledge base for units which match a description and others just return the
descriptions. (The term description is used in a general way in this section. It refers to all of
the types of value that can be set with the Unit datatype editor [yonsss uedit}], and not just
to description units.)

5,9.1 GETMATCHES (SLOT UNIT)

GETMATCHES returns a list of units that match the description in SLOT of UNIT. It
computes progeny or instances, follows references, and performs matches as needed. The
value of GETMATCHES is always a list even if there is only one unit referenced. This Is the
most general retrieval function for the UNIT datatype; It makes use of the more specialized
functions below. It provides for retrieval of the list of units referenced by a slot In a manner
which is independent of the form which is stored.

5,9.2 GETUNITS (SLOT UNIT)

GETUNITS is similar to GETMATCHES but differs in that It returns the descriptions
(simplified) instead of the units that match the descriptions. More precisely, It returns a list
of descriptions as generated by GETUNIT.

,.

65

5.9.3 GETUNIT (DESCR)

GETUNIT is useful for returning a description .without performing matches. It returns a
unit as follows:

Form of Description

Unitname
List of units
"'P Unitname
"'I Unitname
"'D Unitname·
"'REFQ Reference
"'M Reference

What GETUNITS returns

Unitname
First unit in the list. (Oddball case)
Unitname
Unitname
Unitname
Chases the reference and recurs.
Chases the reference and recurs.

5,9.4 UNITMATCH (DESCR START CLASS)

UNITMATCH returns a list of units that match DESCR (a description unit). START is
optional and specifies a unit in the generalization hierarchy at which the search should begin.
Units that are progeny of START are checked. If START is NIL, then the closest non­
description unit parent of DESCR is assumed, If the optional argument CLASS Is given, then
only units having that group classification are considered.

5,9,5 SLOTMATCH (GEN SLOT VAL CLASS)

SLOTMATCH returns a list of all units with a slot named SLOT whose value matches VAL.
The search is limited to units that are progeny of GEN. If CLASS Is given, then the search Is
restricted to units having that group classification.

5.9,6 REF? (SLOT UNIT)

REF? returns "'REFQ for pathname indirect references and 111M for Indirect references
that mention an ancestor. It returns NIL o.therwise.

5,9.7 GET-REF (REFEXPR)

GET-REF returns the value of REFEXPR, which is an Indirect-reference expression.
REFEXPR should be a list in one of the legal formats:

Pathname format: ("'REFQ SLOT UNIT PFLG CLASS)
Ancestor format: ("'M ANCESTOR UNIT CLASS)

66

5,9,8 RESOLVE-GROUP (CLASS START)

RESOLVE-GROUP resolves all references in the slots in all units with group classification
CLASS. If START is specified, only those units that are progeny of START are considered. If
START is NIL, ROOT Is assumed. Slots of role U and directly inherited S slots are Ignored.
RESOLVE-GROUP uses GETMATCHES to resolve the references and REF? to select the slots.

6.9.9 RESOLVE-EXPR (EXPR)

RESOLVE-EXPR replaces all indirect reference expressions in EXPR with the
corresponding lists of units computed by GETMATCHES.

6.10 LIST Datatype Functions

6.10.1 GET-LIST (SLOT UNIT)

GET-LIST returns the list stored in SLOT of UNIT. The list returned is an INTERLISP•
style list. (The first two items, which are used by the UNIT Package, are not returned.) GET­
LI ST does not copy the list.

5.10,2 · PUT-LIST (SLOT UNIT LIST)

PUT-LIST replaces the list in SLOT of UNIT with LIST. (The two UNIT Package tokens at
the beginning are left the same.)

5.10,3 ADD-LIST (SLOT UNIT ITEM)

ADD-LIST adds ITEM to the end of the list stored in the value field of SLOT in UNIT if it
is not already in the list. (Copies the list if necessary.)

6.10.4 CLEAN-LIST (SLOT UNIT)

CLEAN-LIST removes all tokens from the COOR of the list stored in the value field of
SLOT in UNIT that are not terminal values. (This is useful in cases where a list initially
contains descriptions of units. During processing, ADD-LIST may be used to add actual unit
names. At the end, CLEAN-LIST can be used to remove the descriptions.)

,.

6, 10,6 GET•LIST•DATATYPE (LST)

GET-LIST-DATATYPE returns the datatype of LST, an entity of datatype LIST.

6, 10.6 GET-LIST-ELEMENT (LST ELEMNUM)

GET-LIST-ELEMENT returns the ELEMNUMth item from LST, an entity of datatype LIST.

67

Chapter 6

Implementation Notes

6.1 Units: Internal Representation

68

Each unit is an INTERLISP atom with the following information stored on Its property list.

USLOTS: A list of SLOT records (described below).

UMODIFYFLAG: A flag that is T if the unit has been altered since It was last written to disk,
else NIL.

UTIMESTAMP: A number that indicates the time at which the slots of the unit were last ·
accessed, relative to those of other units; NIL if the unit Is not memory-resident.

UOISKADDR: The disk address of the slots of the unit (on the UNITS file).

UGEN: The name of the generalization of the unit if a specialization, else NIL

UPROTO: The name of the prototype of the unit If an Instance, else NIL

USPEC: A list of the names of the specializations of the unit.

UINST: A list of the names of the instances of the unit.

UCLASS: A list of groups of which the unit is a member.

These properties are assigned and removed so as not to disturb any other properties
associated with the atom. This greatly reduces the possibility of conflicts due to a unit and
an atom with no relation to the UNIT Package having the same name. (This is also the reason
for the 1

1U 11 in front of each property name.)

The slot information is paged out to disk when space gets low. (See Section 6.2.)
The remaining properties are permanently memory-resident. This Implementation offers a

reasonable tradeoff of space and time efficlency.1

Each slot is a SLOT record with the following fields:

NAME: The name of the slot.

1 Group membership, for example, could have been indicated by a member-of slot in each
member, or a members slot in each unit that stands for the group. Our implementation makes it
unnecessary to search membership lists when units are deleted and makes it possible to
determine whether a unit is in a group without requiring the slots of the unit to be memory­
resident.

VALUE: The value of the slot.

ROLE: The inheritance role of the slot.

DATATYPE: The datatype of the value of the slot.

DEFAULT: The default value of the slot.

FIELDS: An association list of optional (user-defined) fields.

69

it is assumed that the number of slots associated with a unit is small (usually < 20). It
is therefore reasonably efficient to store the slots as a list of records on the property list of
a unit and locate them via linear search.

6.2 Unit Memory Management and Disk Representation

The UNIT Package contains a mechanism to use a disk file as an extended memory.
Slot information is paged in and out of memory on a demand basis. This allows the use of a
knowledge base that is considerably larger than the available space in memory. The basic
mechanism can be augmented in packages that use the UNIT Package with other
mechanisms to summarize, abstract, and delete data that Is no longer directly related to an
ongoing analysis.

The specialization, generalization, prototype, and instance relations are always memory
resident as are the group classifications for a unit and information about its disk address,
relative time of slot access, and whether the slots have been modified since they were last
written to disk. The slots of a unit are loaded only when they are accessed.

During an INTERLISP garbage collection, if not more than UA.GCTRPCOUNT list cells are
free then a flag is set (UA.BUMPFLG). The next time an access is made to the slots of a
unit, the function UA-BUMPUNITS (Section 8.1.2) is called to move unit slots to disk
(UA.BUMPN at a time) until there are again at least UA.GCTRPCOUNT free cells or there are
no units left whose slots can be paged out.

There are any number of criteria that could be used to determine the units whose slots
are to be paged out. UA-BUMPUNITS calls a function whose name is the value of UA.BUMPFN.

This function is passed two arguments: UA.INCORELIST (the list of units whose slots are In
memory), and UA.UNITLIST (the list of all units in the knowledge base). The function is
expected to return a list of units, sorted so that the slots of those at the head of the list
are to be paged out before the slots of those at the end of the list. The def a ult function Is
UA-TIMESORT, which sorts the units according to recency of access (Section 8.1.43).

When the slots of a unit are paged out to disk, they are stored on the UNITS file. This
file is organized as a collection of physically adjacent blocks. The blocks are either reserved
(i.e., contain unit slots), or free (i.e., available for use). Each block has a header record and a
trailer record with the unit slots in between (for reserved blocks). Free blocks on the disk
are allocated using Knuth's boundary tag dynamic allocation scheme [Knuth, 1968]. Thus the
free blocks are located on a doubly linked disk list.

The format of a free block Is as follows:

Header Record:
TAG= F
SIZE = N (Number of characters in the block)
FLINK = Disk Address of Previous Block In Free List
BLINK = Disk Address of Next Block In Free List

Undefined Structure:
(whatever was in the block before it was declared free)

Trailer Record:
TAG= F
SIZE= N
DUMMY= nZZZ

70

FLINK and BLINK are pointers to the neighboring blocks on the free list. The notation
"nZZZ" indicates that a number of "Z" characters are entered. This number adjusted to make
the length of a trailer record exactly 13 characters. This means that when a block is freed,
the file pointer can be moved backwards 13 characters to determine the length and status
of the physically adjacent lower block In the file. Physically adjacent free blocks (on either
side of a block newly declared free) are combined Into a larger block when possible.

FLINK and BLINK are initialized to O. UA.ROVER and UA.AVAIL are Initialized to the
address of the first free block on the freelist. No trailer Is written for the last free block on
the freelist. This is done so that an accurate bytecount can be obtained for the UNITS file.
It depends on the last free _block also being the last block on the UNITS file.

The format of a reserved block is as follows:

Header Record:
TAG= R
SIZE= N

Unit Slots:
A list of SLOT records (described above).

Trailer Record:
TAG= R
SIZE= N
DUMMY= nZZZ

A roving pointer (UA.ROVER) through the free list is used to allocate blocks on a first­
fit basis. (The use of a roving pointer prevents a buildup of small blocks at the beginning of
the free list.) The first 1 O characters of the UNITS file give the address of the first block on
the free list.

When a block is allocated, the unneeded portion is returned to the free list unless It Is

71

too small. The minimum usable block size Is determined by the variable
UA.MINGOODBLOCKSIZE. Initially a file Is set up with one free block of UA.BLOCKSIZE

characters (currently set up to be 612111612 111 7, the maximum number of characters that can
be addressed without resorting to a multiple level page table).

As indicated above, slot information is stored on the UNITS file described above.
Information about the relations, groups, and disk address for the slot information on the UNITS
file is stored on the RELATIONS file. This Information is stored as a series of RELREC records
with the following fields:

NAME: The name of the unit.

DISKADDR: The disk address of the slot information on the UNITS file.

GEN: The generalization of the unit.

SPEC: A list of the specializations of the unit.

PROTO: The prototype of the unit.

INST: A list of the instances of the unit.

CLASS: A list of the groups of which the unit is a member.

6.3 Implementation of Inheritance

One of the general advantages for inheritance of properties is that procedures and
data structures can be declared at one unit and shared by Its progeny without actually
duplicating the structures in memory. For deep trees and large shared structures the space
savings can be considerable. The obvious Implementation and mental model for implementing
such sharing involves chaining back through ancestors until the shared structure Is found. In
such an implementation, if a value is not In a unit, one must chain back (potentially all the
way to the ROOT) to either find the shared value or to determine that there is no such value.
The time required for retrieval in this approach is proportional to the depth of the subtree.
Offsetting the time disadvantage of this approach Is the ease of updating values. To change
a value one need only change the value in the most general ancestor and the effect of the
change is automatically propagated to all the progeny with no further computational effort.

The UNIT Package uses a mechanism that offers more efficient retrieval with only a
modest Increase in memory usage and difficulty in updating values.

6.3. 1 Standard Format

When a slot is first defined in a UNIT Package knowledge base, it is created In
Standard format. The unit in which this takes place Is termed the top-level or most general
unit for that slot. Slot fields are filled in as follows:

NAME: Name .of the slot
DATATYPE: Name of the unit for the datatype.
ROLE: List of tokens; one of S, R, 0, and U.
VALUE: Value (representation depends on datatype).
DEFAULT: (like value).
FIELDS: Optional fields.

72

For units that are specializations of this top-level unit, the datatype and role fields are
used differently in certain situations. (These changes of format are internal conventions for
the UNIT Package to minimize usage of space. They are Invisible to a user.) The following
defines three special formats.

6.3.2 S Format

NAME: Name of the slot.
DATATYPE: Name of Top-level unit for the slot.
ROLE: Atom S.
VALUE: NIL
DEFAULT: NIL
FIELDS: Optonal fields.

The idea behind this format is to speed up the retrieval of inherited values without
copying them. Thus when a request is received (by the function GETFIELD [Section 6.6.5])
to retrieve a value of a slot which has been inherited, the request Is deferred to the top­
level unit. In terms of functions (described below), this is done using INHERITEDSLOT?
(Section 5.5.10) which returns the name of the top-level unit from the datatype field if the
role is S. This approach avoids tracing back up the tree as in the simple implementation
without making multiple copies of the fields In all of the units Involved.

In practice, the top-level unit contains all of the information for the role S slot and all of
its progeny have the slot in S format. Any inquiry about the value field in the slot In progeny
causes the corresponding value in the top-level slot to be returned. Any attempt to change
a value in progeny results in an error message. To update the value In the top-level unit Is
simple and no processing is required to propagate the effects of the change to progeny. The
slots in progeny are called inherited slots.

6.3.3 No change format

For R, O, and U roles, the information in the value and default fields is potentially
changeable. However, up to the moment when this Information Is changed, It Is advantageous
to avoid making copies of the various slot fields in progeny.

The No Change (NC) format works essentially the same way as the S format. The top­
level unit is in Standard format and its progeny start out In NC format. Any requests for
value retrieval in the progeny cause the corresponding field in the top-level unit to be

73

returned. These progeny are said to be tracking the top-level, or mast,r unit. Any change In
the value of the top-level unit Is thus automatically propagated to the progeny that are In NC

format.

NAME: Name of the slot.
DATATYPE: Name of unit from which fields are to be copied.
ROLE: Atom NC
VALUE: NIL
DEFAULT: NIL
FIELDS: Optional fields

As soon as any field is changed in one of the progeny, the slot format Is changed
immediately to Standard format. All of the fields (except of course the changed one) are
copied from the top-level unit. The slot is no longer an unchanged slot. It becomes a master
slot for unchanged slots below it. The unchanged slots below are left in NC format, but the
symbolic pointer in the datatype field is modified to point to the new master unit.

The NC format provides a mechanism to avoid copying fields as long as possible but still
preserving the ability for change. It also implements the notion that the restrictions In R and
0 slots actually follow the changes in their top-level (or next level) units until they are
changed. Once those slots have been changed, they are considered to be further restricted
and changes that occur in the top-level unit are not propagated.

6,3.4 Role Change Format:

This is the format for a slot to which a CHANGEROLE operation has been performed
(where the role has been changed to S). (See Section 5.6.10.)

ROLE: List of tokens including S and either R or 0.
DATATYPE: Just as in Top-Level Units.
VALUE: Just as in Top-Level Units.
DEFAULT: Just as In Top-Level Units.
FIELDS: Just as in Top-Level Units.

For slots having an R or O role which are later marked as S, the role S is simply added
to the role list. The progeny will then have the slot In the S format (above) with the
datatype pointing to the unit to which the S role was added. In practice this role change
causes a slot to switch to Standard format if it is In NC format. All progeny of the slot are
then placed In S format.

74

Chapter 7

UNIT Package: Global Variables

Some variations in global variables may exist from site to site. When in doubt, check
with your local UNIT Package programmer.

COMMON.NOPRINTSLOTS: (ANCHOR, CO-REFS, and NOT-CO-REFS) The names of slots that
are not printed with a description or indefinite unit as the value of a slot.

COREFILELIST: A list of the names of the files included in the UNIT Package.

EX?FILE: The name of a file on which UNIT Package usage information is to be recorded.

HOSTNAME: The name of the host computer (e.g., SUMEX). This Is only necessary if your site
is not on the ARPAnet (i.e., (HOSTNAME) returns NIL).

PROMPT: The prompt character used by UE (default is 11 : 11).

UA.AVAIL: File pointer to first free block in the UNITS file.

UA.BLOCKSIZE: Initial size of the free block (6121161211 7 bytes).

UA.BUMPFLG: Set by GCTRP break when fewer than UA.GCTRPCOUNT free list cells remain.

UA.BUMPFN: The name of the function that sorts units for moving to disk.

UA.BUMPN: Unit slots are paged out UA.BUMPN units at a time when more space is needed.
This is done until UA.GCTRPCOUNT list cells are recovered or there are no more units whose
slots are memory-resident. If UA.BUMPN Is less than 1, it is interpreted as a fraction of the
number of units currently in memory.

UA.ERRMSG: Text of the error message.

UA.ERRNO: Error number returned for error messages.

UA.ERRTOKEN: The unit, slot, field, relation, function, role, group, or file thought to be in error
(or a list of several of these).

UA.FILENAME: Name of current knowledge base (no extension).

UA.FIXED-FIELDS: List of permanent fields In each slot.

UA.GCTRPCOUNT: The minimum number of list cells that must be free if unit slots are not to
be paged out to disk from memory.

UA.HASHFILE: Name of the current HASH file (including extension),

,.

76

UA.HEADERPOS: File pointer to the position for the header record of the block being written.

UA.INCORELIST: List of all units whose slots are in In memory.

UA.MINGOODBLOCKSIZE: Minimum acceptable free block size in the UNITS flle. No smaller
free block will be created. Can be adjusted to suit the environment where the UNIT Package
is being used.

UA.MSGFLG: Flag that controls printing of messages by the UNIT Package itself. Initially it Is
NIL for suppression of messages. If set to T, the UNIT Package will print tracing messages
to the terminal in addition to the normal error messages when error conditions are noticed.
These messages are not intended to be of use to a normal user. They are Intended to be
helpful to programmers in debugging the UNIT Package.

UA.NONUSERS: Names of directories that do not correspond to users but where some unit
information is stored.

UA.PFLG: T if unit paging is enabled.

UA.RELFILE: Name of the current RELATIONS file (including extension).

UA.ROVER: Roving file pointer to free blocks in the UNITS file.

UA.SIZE-FACTOR: Size multiplier when allocating blocks.

UA.SIZE-INCR: Size increment when allocating blocks. (See UA-PICKSIZE for formula.)

UA.SYSNAME: Name of the system for SYSTAT purposes (e.g., UNITS).

UA. TIME ST AMP: Current relative time for unit slot access. Incremented every time the slots
of a different unit are accessed (i.e., a unit different from the last unit whose slots were
accessed).

UA.TRACEFLG: When set to T, various trace messages are displayed on the primary output
device as UNIT operations proceed.

UA. TRAILPOS: File pointer to the position for the trailer record of the block being written.

UA.UNIT: Name of the unit whose slots have been most recently accessed.

UA.UNITFILE: Name of the current UNITS file (including extension).

UA.UNITLIST: The list of all units in the current knowledge base.

UA.UNITSIN: Total number of units whose slots have been loaded into memory from disk for
the current knowledge base (see below).

UA.UNITSOUT: Total number of units whose slots have been paged out to disk from memory
for the current knowledge base (see below).

76

UA.UPFLG: T if unit paging information (above) is to be maintained.

UA.USERS: List of directories to be searched by NETWORK? when returning a 11st of
knowledge bases.

UEBEENCALLED: T if UE-TOP has been called.

UEBREVITY: Profile flag. T if BRIEF mode is in effect.

UEDEFAUL TFLG: Profile flag. T if default fields are to be printed.

UEDEFN: Profile flag. T if prompting for definitional roles is to occur.

UEFIRSTLISPFLG: T the first time the user calls INTERLISP from UE.

UEHACKER: Profile flag. T for HACKER mode,

UEPROFILEFLG: T if a user profile exists.

UEQUIETFLG: Profile flag. T if QUIET mode Is in effect.

UERECDEPTH: UE recursion level.

UERECORDFILE: Name of the file in which a recording Is being written.

UETRANSMITFLG: Profile flag. T if values are to be transmitted to progeny.

UETYPEFLG: Profile flag. T if prompting for unit type (instance or specialization) Is to occur
when a new unit is created.

UEWITHFLG: Profile flag. T if DESCR and INDEFINITE units are to be printed in WITH

notation.

UM.USERNAME: Name of the current user. This variable Is used by GETUSERNAME which
provides the user's name for various bookkeeping operations. It's value Is a string equal to
the user's name (usually last name).

UNITS.STORAGE: A list of data types and their associate Initial MINFS settings.

UT.NETWORKS: An association list of knowledge bases paired with units and functions that
have been transferred from them to UA,FILENAME.

UTNETWORK: The current transfer knowledge base.

0

Chapter 8

UNIT Package: Internal Functions

8. 1 Unit Access Internal Functions

8.1.1 UA-ASSIGNBLOCK (SIZE)

77

UA-ASSIGNBLOCKSIZE assigns the next free block of SIZE bytes on the UNITS file and
returns its file pointer as a value.

8.1.2 UA-BUMPUNITS (CURUNIT)

UA-BUMPUNITS is called from UA-GETSLOT and UA-MAKEREL If UA.PFLG and
UA.BUMPFLG are set. UA.BUMPFLG gets set when there is a GCTRP break (not enough free
list cells left). UA-BUMPUNITS pages out UA.BUMPN of the memory-resident units according
to the order specified by the function given by UA.BUMPFN. CURUNIT is the unit whose
slots are currently being accessed. UA-BUMPUNITS will not page its slots out to disk.

8.1.3 UA-CHANGEROLE (SLOT UNIT ROLE CASE MASTER)

UA-CHANGEROLE is a recursive subroutine of CHANGEROLE that propagates a change of
inheritance role to ROLE for SLOT in UNIT to progeny. MASTER Is the unit to be tracked. A
number of CASEs are recognized:

ADD (Add an S role)
S (Convert to S format)
RO (Change role fro'm R to O or vice versa)
US (Change role from U to S)
SRO (Convert S role to R or 0)
NC (Convert to NC format)
CHANGE (Change role In top-level unit)
COPYROLE (Copy role and datatype fields, leaving others Intact

[also used for CHANGE])

8, 1.4 UA-COMISSUE (COMMAND JUNKFILE)

UA-COMISSUE issues COMMAND (a command string) to the operating system through a
SUBSYS. Output goes to JUNKFILE If set or to the system null flle (e.g., NUL: for TOPS-20).

8.1.5 UA-DELETEROLE1 (SLOT UNIT ROLE CASE)

78

UA-DELETEROLE 1 is a recursive subroutine of DELETEROLE. It deletes ROLE from SLOT
in UNIT and its progeny. Several CASEs are recognized:

RS (Delete S role from R and S or O and S)
NC (Convert from S format to NC format)
DELETE (Delete ROLE)
CLEAR (For unchanged and inherited slots. Just copy the role

and datatype fields from master [which has already
been changed])

8. 1,6 UA-DELREL (UNIT)

UA-DELREL undefines UNIT.

8. 1. 7 UA-DELSLOT (SLOT UNIT KEEPFLG MSGFLG)

UA-DELSLOT is a recursive subroutine for DELETESLOT. It deletes SLOT from UNIT and
its progeny according to KEEPFLG. If MSGFLG is T, then a DELETE message Is sent to the slot
as appropriate.

8.1.8 UA-ERRMSG (ERRNO TOKEN)

UA-ERRMSG prints the error message associated wth ERRNO for the specific TOKEN In
error. The complete list of error numbers, token types, and messages Is shown In Appendix
C.

8. 1.9 UA-GETLISPFILE (FILE)

UA-GETLISPFILE reads INTERLISP functions from FILE.

8.1. 10 UA-GETREL (UNIT RELATION)

UA-GETREL returns the value of RELATION for UNIT.

8. 1, 11 UA-GETRELFILE (RELFILE)

UA-GETRELFILE reads the set of unit relations from RELFILE.

8. 1, 12 . UA-GETRELREC (UNIT FILE)

79

UA-GETRELREC reads the relation record for UNIT from FILE. If UNIT is NIL, then UA­
GETRELREC reads the next relation record.

8.1.13 UA-GETSLOT (SLOT UNIT)

UA-GETSLOT returns the value of SLOT of UNIT. If UNIT is not the most recently
referenced unit, then UA-GETSLOT sets UTIMESTAMP property for UNIT, and resets UA.UNIT

to UNIT. If UA.BUMPFLG is T, then calls UA-BUMPUNITS to page out the slots of some units to
gain space. If the slots of UNIT are not in memory then calls UA-LOADUNIT to page them in.
When accessing the value of a slot with UA-GETSLOT, it must be remembered that
subsequent calls to UA-GETSLOT (or SLOT?) for another unit may cause the slots of any
other original unit to be paged out.

8. 1.14 UA-GETSLOTFIELD (SLOT UNIT FIELD)

UA-GETSLOTFIELD returns the value of FIELD of SLOT of UNIT, where FIELD can be one
of VALUE, ROLE, DATATYPE, DEFAULT and FIELDS.

8. 1.16 UA-HIERORDER (UNIT FLG)

UA-HIERORDER returns a list of slots In UNIT In hierarchical order. See SORTSLOTS
(Section 5.5.5) for a description. FLG is either Hor R.

8.1.16 UA-INITGLOBALVARS (FILE)

UA-INITGLOBALVARS initializes UA.FILENAME to FILE. It also initializes UA.UNITLIST,

UA.INCORELIST, UA.TIMESTAMP, UA.UN/TSIN, UA.UNITSOUT, and UA.BUMPFLG.

8, 1.17 UA-LOADUNIT (UNIT)

UA-LOADUNIT loads the slots of UNIT into memory.

8, 1, 18 UA-LOCALFILENAME (FILENAME)

UA-LOCALFILENAME returns FILENAME minus any <USERNAME). For example,
(STEFIK>FOO.BAZ is converted to FOO.BAZ.

8. 1. 19 UA-MAKEREL (UNIT)

UA-MAKEREL defines UNIT as a unit.

8.1.20 UA-MAKESLOT (SLOT UNIT ROLE OATATYPE MASTER)

80

UA-MAKESLOT is a recursive subroutine for MAKESLOT. It creates slots at lower levels
in hierarchy and patches existing slots encountered along the way.

8.1.21 UA-MAKESTANOARD (SLOT UNIT MASTER)

UA-MAKESTANDARD converts SLOT in UNIT from NC to standard format.

8.1.22 UA-OKSLOT? (SLOT UNIT ROLE OATATYPE)

UA-OKSLOT? is a subroutine of MAKESLOT that determines whether the DATATYPE and
ROLE of an existing SLOT in UNIT conflict with a proposed slot.

8.1.23 UA-OPENFILE (FILENAME TYPE)

UA-OPENFILE opens FILENAME. TYPE is either RELATIONS or UNITS.

8. 1.24 UA-OPENUNITFILE (UNITFILE)

UA-OPENUNITFILE opens UNITFILE as a UNITS file and inltiallzes UA.AVAIL and
UA.ROVER.

8.1,25 UA-PACKAGEFN? (FN)

UA-PACKAGEFN? returns T if FN is a function in any of the UNIT Pac1'.age files that
have been loaded into memory.

8.1,26 UA-PATCHDELSLOT (SLOT UNIT OLDMASTER)

UA-PATCHDELSLOT is a recursive subroutine of DELETEUNIT used to patch slots in the
progeny of a deleted unit that are tracking a slot in the deleted unit.

,,..

I

8. 1 .27 UA-PATCHRENAME (SLOT UNIT OLDMASTER NEWMASTER)

81

· UA-PATCHRENAME is a recursive subroutine of RENAMEUNIT used to patch slots In the
progeny of a renamed unit that are tracking a slot in the renamed unit.

8.1.28 UA-PICKSIZE (SIZE)

UA-PICKSIZE computes a free block size based on SIZE bytes for the UNITS file.
(Slightly larger blocks than strictly required are allocated to allow for future expansion of a
unit.)

8, 1.29 UA-PROGENYSLOT? (SLOT UNIT)

UA-PROGENYSLOT? is a recursive subroutine of PROGENYSLOT?

8.1.30 UA-PUTHEADER (FILEPTR TAG SIZE FLINK BLINK)

UA-PUTHEADER writes the header for a block on the UNITS file.

8. 1 .31 UA-PUTREL (UNIT RELATION RELATIVE)

UA-PUTREL defines RELATION between UNIT and RELATIVE.

8. 1 .32 UA-PUTRELFILE (RELFILE FLG)

UA-PUTRELFILE writes current relations to RELFILE. If FLG Is T then a new version of
the file is written.

8.1.33 UA-PUTSLOTFIELD (SLOT UNIT FIELD VALUE)

UA-PUTSLOTFIELD puts VALUE into FIELD of SLOT of UNIT, where FIELD Is one of: NAME,
VALUE, ROLE, DATATYPE, DEFAULT, and FIELDS.

8.1.34 UA-PUTTRAILER (FILEPTR TAG SIZE)

UA-PUTTRAILER writes the trailer for a block on the UNITS file.

82

8.1.35 UA-PUTUNIT (UNIT)

UA-PUTUNIT writes the slots of UNIT to the UNITS file If they have been modified since
they were last written to disk. (Allocates a new block for it If the old one won't flt.)

8. 1,36 UA-PUTUNITFILE (UNITFILE)

UA-PUTUNITFILE writes modified units to UNITFILE, updates the Free List pointer, and
closes the file.

8. 1.3 7 UA-RELEASEBLOCK (PTR)

UA-RELEASEBLOCK returns the free block at address PTR to the UNITS file free 11st.

8. 1,38 UA-RELEASEBLOCK 1 (PTR HEADER)

UA-RELEASEBLOCK 1 is a subroutine of UA-RELEASEBLOCK.

8. 1 .39 UA-RENAMESLOT (SLOT UNIT NEWNAME)

UA-RENAMESLOT is a recursive subroutine for RENAMESLOT. It renames SLOT In UNIT
and its progeny to NEWNAME.

8.1 .40 UA-SETDATATYPE (SLOT UNIT DATATYPE)

UA-SETDATATYPE changes the datatype of SLOT In UNIT and Its progeny to be
DATA TYPE.

8. 1.41 UA-SETROLE (SLOT UNIT ROLE MASTER)

UA-SETROLE is a subroutine of PUTROLE. It propagates ROLE for SLOT In UNIT to all
progeny.

8.1.42 UA-STORERELREC (REC)

UA-STORERELREC defines a unit with properties specified in the relation record REC. It
returns the name of the unit.

83

8. 1.43 UA-TIMESORT (UNITLIST)

UA-TIMESORT orders units on UNITLIST according to recency of access (least recent
accesses at the beginning of the list). It returns a sorted 11st of units.

8. 1.44 UA-UNRELATE (UNIT RELATION RELATIVE)

UA-UNRELATE removes RELATIVE for UNIT from RELATION.

8.2 Unit Management Internal Functions

8.2.1 GETUSERNAME ()

GETUSERNAME returns the name of the current user. It first checks UM.USERNAME,
then the LOGIN name (unless a member of UA.NONUSERS), then the CONNECTED name
(unless a member of UA.NONUSERS), finally asks the user.

8.2.2 NOTEST (EVALUE ERESTRICTION ESLOT EUNIT EARGS)

NOTEST always returns T. It is intended for use by an attached procedure for checking
something in cases where the test is not meaningful.

8.2.3 NIL TEST (EVALUE ERESTRICTION ESLOT EUNIT EARG5)

NIL TEST always returns NIL. It is intended for use by an attached procedure for
checking something in cases where the test is not meaningful.

8.2.4 UM-CLEARBA0VALUES (SLOT UNIT RESTRICTION)

UM-CLEARBADVALUES is a recursive subroutine of CLEARBADVALUES used to clear the
VALUE field of SLOT In the progeny of UNIT that do not satisfy a given restriction.

8.2,5 UM-NEl:D-TV? (SLOT UNIT ROLE)

UM-NEED-TV? returns T If a terminal value Is required for SLOT In UNIT, given the
specification of ROLE.

84

-

-

Appendix A

UE Command Summary -

-

--

COMMAND Examples Effect
--

CONSISTENCY CON Check consistency of knowledge base
COPY COP AB Copy unit A to B
CREATE CR B A SP Create unit B as a specialization of

A
DELETE· DE A Delete unit A
DISPLAY DI ROOT SP 2 Display the generalization hierarchy

starting at ROOT. Show class nodes
(specializations) only and limit
printing to 2 levels

DONE DO Return to operating system
(OK works too)

EDIT EA Edit the slots In unit A
GROUP G Enter Group Command interpreter.

(Operations on groups of units) ;:.,

INSTANTIATE I A Make an instance out of A (a
specialization)

LISP LI Invoke INTERLISP userexec :::

(OK brings you back)
MSG MS AB C Send a B message to unit A

(Starts up the procedure in the B
slot with argument C)

?MSGS ?M A List the tokens for procedures
in unit A

MA TCH MA Print list of units matching
description

MOVE MO A Move unit A to another pla(?e in the
generalization hierarchy

NETWORK N Switch to another knowledge base
PRINT P A Print slots in unit A

P AB Print B slot In unit A
!PRINT !PA Same as PRINT with profile set to

VERBOSE HACKER NO-WITH-NOTATION
RECORD RE C A Make recording of this session

· in file A. A subsequent REC
command turns it off.

RENAME REN AB Rename unit A to B
SAVE SA Save your KB but do not exit.
SET-PROFILE SE BR HA OK Set Profile to BRIEF HACKER
SHOWREFS SH A Show units whose slots reference

unit A
;;

SPECIALIZE

SPLITUNIT

SUMMARYFILE
TRANSFER
TSHOW

WHATSNEW.

NOTES:

SPE A

SPL A

SU
TR
TS

WH7

Change Instance node A to a class
node (specialization)

Introduce a new node between A and
its parent

Create a summary of the KB
Get units from another KB
Display units and functions that

have been transferred to the
current KB

List units that have been changed
In the past 7 days.

86

You can type ? or HELP during any of the commands for an explanation of the required
parameters. If you Just type a command name, you will be prompted for each of the
arguments in turn. Many of the commands have options that would take to long to list here.
If you explore the commands with the ?, you will find the options.

Character

tE
tP

tK
tO

Function

(<ctrl>-E) Cancel a Command
(<ctrl>-P) Look--Get trace of where you are.
(<ctrl>-K) Recur the Network editor.
(<ctrl>-O) Stop this output.

COMMAND

CDEFAULT
CLEARVALUE
CLASSIFY

COPY

CREATE

DELETE
DISPLAY

DONE
EDIT

FIELD-EDIT
!HELP
MSG

PRINT
!PRINT

RENAME
SETDEFAULT
SHOWRELATIONS

SORT

Appendix B

Slot Editor Command Summary

Examples

CD A
CLE A

CL

CO ABC

CR A LIST 0

DE A
DI

DO

EA

FA
!H
MAB

PB
!PB

R AB
SE A
SH

SO H

Effect

Clear the default of slot A
Clear the value of slot A

Change the group classification
of this unit.

Copy value of slot A from slot
C in unit B.

Create slot A of datatype LIST
and inheritance role O.

Delete slot A.
List the names of the slots

in this unit.
Return to UE. (OK works too.)
Edit slot A with datatype

editor.
Edit the fields in slot A.
Display this message
Send a B message to slot A.

(Starts up the procedure in
the A field of the slot or in
the A slot of the associated
data type.)

Print slot B.
Same as PRINT command with the

profile set to VERBOSE HACKER
NO-WITH-NOTATION

Rename slot A to B.
Set the DEFAULT of slot A.
Show the built-in relations of

this unit (e.g., GEN, PROTO)
Sort slots In hierarchical order

86

::,

_:,

Appendix C

Error Messages

The complete list of UNIT Package error messages is shown below.

Error Number Error Token Error Message

1 FILENAME FILE not found.
2 UNIT UNIT not a Specialization.
3 UNIT INSTANCE cannot have progeny.
4 UNIT1 UNIT2 UNIT1 is not an ancestor of UNIT2.
5 FILENAME NETWORK must be closed.
6 UNIT UNIT slots not in memory--can it be paged

out.
7 UNIT UNIT slots have no disk address.
9 UNIT Relation record not found for UNIT.

10 UNIT UNIT not defined.
11 UNIT UNIT already defined.
12 UNIT UNIT has no Generalization.
13 UNIT Illegal name for new UNIT.
16 UNIT Instances of Primitive or Slot UNIT are

not units.
17 UNIT Proposed Primitive or Slot UNIT has

instances that are units.
18 UNIT Datatype UNIT must be a member of

PRIMITIVE group.
19 UNIT UNIT not an Instance.
20 SLOT UNIT SLOT not found in UNIT.
21 SLOT UNIT SLOT already defined in UNIT.
22 SLOT UNIT Illegal name for new SLOT in UNIT.
23 SLOT UNIT Illegal change to directly Inherited S

Role SLOT in UNIT.
25 SLOT UNIT Operation illegal for non Top-level SLOT

in UNIT.
26 SLOT UNITs Conflict: SLOT already defined in

Progeny UNITs.
30 ROLE SLOT UNIT ROLE not found for SLOT In UNIT.
31 ROLE SLOT UNIT Illegal ROLE for SLOT in UNIT.
32 ROLE SLOT UNIT incompatible ROLE already set for SLOT

in UNIT.
40 CLASS UNIT Invalid CLASS for UNIT.
50 SLOT UNIT Extra SLOT in Slotllst of UNIT.
51 SLOT UNIT Missing SLOT in Slotlist of UNIT.
52 SLOT UNIT Duplicate SLOT in Slotlist of UNIT.
60 UNIT Illegal change to the ROOT UNIT.
71 FIELD SLOT UNIT Illegal operation on Permanent FIELD of

SLOT in UNIT.

87

72

73

74

80
92

110

150

FIELD SLOT UNIT

FIELD SLOT UNIT

FIELD SLOT UNIT

RELATION UNIT
FUNCTION
SLOT UNIT

ROLE SLOT UNIT

SLOT UNIT

FIELD not defined for SLOT in UNIT.

FIELD already defined for SLOT in UNIT.

Illegal name for FIELD of SLOT In UNIT.

Illegal RELATION for UNIT.
LISP FUNCTION not defined.
LISP error from Attached Procedure in

SLOT of UNIT.
Terminal Value required for ROLE of SLOT

in UNIT.
Definition conflict for SLOT in UNIT.

88

89

References

[Bobrow, 1977]
D. G. Bobrow and T. Winograd, An Overview Of KRL, A Knowledge Representation
Language. Cognitive Science, Vol. 1, No. 1, January 1977, pp. 3-46.

[Brachman, 1977]
R. J. Brachman, What's In A Concept: Structural Foundations For Semantic Networks.
International Journal of Man-Machine Studies, Vol. 9, 1977, pp. 127-152.

(Dahl, 1966]
0-J. Dahl and K. Nygaard, SIMULA - An ALGOL-based Simulation Language. CACM, Vol. 9,
No. 9, September 1966, pp. 671-677.

[Friedland, 1979]
P. E. Friedland, Knowledge-Based Experiment Design In Molecular Genetics. STAN-CS-79-
77.1 (HPP-79:-29), Dept. of Computer Science, Stanford University, October 1979.

(Goldberg, 1976]
A. Goldberg and A. Kay, SMALlTALK-72 Instruction Manual. SSL 76-6, Xerox Palo Alto
Research Center, 1976.

(Hendrix, 1975)
G. G. Hendrix, Expanding The Utility Of Semantic Networks Through Partitioning. IJCA/4, ·
1975, pp. 115-121.

[Knuth, 1968]
D. E. Knuth, The Art Of Computer Programming. Volume I: Fundamental Algorithms. Reading,
Mass.: Addison-Wesley, 1968

(Quillian, 1968]
M. R. Quillian, Semantic Memory. In M. Minsky (Ed.), Semantic Information Processing.
Cambridge, Mass.: MIT Press, 1968.

(Stefik, 1979]
M. J. Stefik, An Examination Of A Frame-Structured Representation System. Proceedings
of the Sixth International Joint Conference On Artificial Intelligence, August 1979, pp. 846-
852.

[Stefik, 1980]
M. J. Stefik, Planning With Constraints. STAN-CS-80-784 (HPP-80-2), Dept. of
Computer Science, Stanford University, January 1980.

(Teitelman, 1978]
W. Teltelman, INTERLISP Reference Manual. Xerox Palo Alto Research Center, Palo
Alto, Ca., October 1978.

90

[Woods, 1975]
W. A. Woods, What's In A Link: Foundations For Semantic Networks. In O. G. Bobrow and

A. Collins (Eds.), Representation And Understanding: Studies In Cogntttv, Sci,nc,. New York:

Academic Press, 1976.

UNCLASSIFIED

Security CIHllflullon

DOCUMENT CONTROL DATA - R & D
(Sr.curotv classification of title, body of abstract and indexing annotation niu1t be entered when the overall document is clnlifiedl

1. ORIGINATiNG ACTIVITY 2e. DOCUMENT SECURITY CLASSIFICATION
UNCLASSIFIED

DEFENCE RESEARCH ESTABLISHMENT ATLANTIC 2b. GROUP

J. DOCUMENT TITLE

UNIT PACKAGE USER'S GUIDE

4. DESCRIPTIVE NOTES (Type of report and inclusive date,) TECH MEMO

5. AUTHOR(S) (L11t name, first name, middle initial)

SMITH, REID G., & FRIEDLAND, PETER

6. DOCUMENT DATE
DECEMBER 1980

7a. TOTAL N% OF PAGES
10 17b. NO. OF REFS

12
Sa. PROJECT OR GRANT NO. 9a. ORIGINATOR'S DOCUMENT NUMBER(SI

D.R.E.A. TECHNICAL MEMORANDUM 80/L

8b. CONTRACT NO. 9b. OTHER DOCUMENT NO.(SI (Any other numbers that may be
..igned thi1 documentl

10. DISTRIBUTION STATEMENT

11. SUPPLEMENTARY NOTES 12. SPONSORING ACTIVITY Department of
National Defence, Canada, Research anc
Development Branch. National Science
Foundation (Grant MC578-02777)

13. ABSTRACT

The UNIT Package is a frame-structured, hierarchically-
organized knowledge representation and acquisition system. The
package has nodes for individuals, classes, indefinite individuals,

and descriptions. Links between the nodes are structured with
explicit definitional roles, types of inheritance, defaults, and

various datatypes.

This report contains an overview of the UNIT Package, a

guide to the use of the Unit Editor (UE), a sununary of the contents
of the BOOTSTRAP knowledge base, and a summary of high-level access
functions.

It also contains implementation information, including a
discussion of the underlying data structures,
low-level functions.

llSIS

1•--010

91

global variables and

UNCLASSIFIED

s,curlty c1111lflullon

KEV WORDS

ARTIFICIAL INTELLIGENCE (AI)

KNOWLEDGE REPRESENTATION

REPRESENTATION LANGUAGES

KNOWLEDGE ACQUISITION

UNITS
FRAMES

SEMANTIC NETWORKS
KNOWLEDGE BASES

KNOWLEDGE-BASED SYSTEMS

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address of the
organization issuing the document.

;>,. DOCUMENT SECURITY CLASSIFICATION: Enter the overall
sccmity classification of the document including special warning
terms whenever applicable.

2b. GROUP: Enter security reclassification group number. The three
9ro11ps are defined in Appendix 'M' of the ORB Security Regulations.

3. OOCUMENT TITLE: Enter the complete document title in all
capital letters. Titles in all cases should be unclassified. If a
,ulficiently descriptive title cannot be selected without classifi­
cation. show title classification with the usual one-capital-letter
abbreviation in parP.ntheses immediately following the title.

4. DESCRIPTIVE NOTES: Enter the category of document, e.g.
technical report, technical note or technical letter. If appropri­
ate, enter the type of document, e.g. interim, progress,
summary, annual or final. Give the inclusive dates when a
specific reporting period is covered.

5. AUTHOR(S): Enter the name(s) of authorls) as shown on or
in the document. Enter lest name, first name, middle initial.
If military, show rank. The name of the principal author is an
absolute minimum requirement.

6. DOCUMENT DATE: Enter the date (month, yead of
Establishment approval for publication of the document.

7a. TOTAL NUMBER OF PAGES: The total page count should
follow normal pagination procedures, i.e., enter the number
of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
refercmces cited in th4 document.

Ba. PROJECT OR GRANT NUMBER: If appropriate, enter the
applicable research and development project or grant number
under which tho document was written.

Sb. CONTRACT NUMBER: If eppropriate, enter the applicable
number under which the document was written.

'la. ORIG:NATOR'S DOCUMENT NUMBEA(S): Enter the
r;fli,·iat document number by which the document will be
,deritifiL'fl and controlled by the originating activity. This
numbor must be unique to this document.

92

9b. OTHER DOCUMENT NUMBER(S): If the document h11 been
assigned anv other document numbers (either by the originator
or by the sponsor), also enter thi1 number(sl.

10. DISTRIBUTION STATEMENT: Enter any limitations on
further dissemination of the document, other than thosa imposed
by security classification, using standa<d statements auch 11:

(11 "Qualified requesters may obtain copies of this
document from their defence documentation center."

121 "Announcement and dissemination of thi1 document
Is not authorized without prior approval from
originating activity."

11. SUPPLEMENTARY NOTES: Use for additional explanatory
notes.

12. SPONSORING ACTIVITY: Enter the name of the departmental
project office or laboratory sponsoring the ,_ch end
development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document, even though It may also appear
elsewhere in the body of the document itsalf. It is hltttly
desirable that the abstract of classified documents bt unclftsi­
fied. Each paragraph of the abstract shell end with an
Indication of the security classiflcalion of tht Information
In the parag.-aph (unle11 the document lt•lf is uncla11ifiedl
represented aa (TS), (SI, (Cl, (RI, or (U).

The length of the abstract should be limited to 20 aingt .. apaced
standard typewritten line1; 7,.., inches long.

14. KEY WORDS: Key words are technically mNningful te,ma or
short phrases that characterln a document and could bt helpful
in cateloglng the document. Kty words lhould be Mltcttd to
that no MCurltv classification 11 required, ldentlfltn, such 11
equipment model designation, trade namt, milite,y project code
name, geographic location, mav be used u key words but will
be followed by an indication of technical context.

I

-·------ □HEnCE RESEHRCH ESlABllSHffiEnT HHHnnc ------

------- □HEnCE RfSEARCH ESlABllSHmfnT RTlRnTIC -----

	Units1
	Units2
	Unit1sA
	Units3
	Units4
	Units5

