
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14, NO. 12. DECEMBER 1988

Design of Knowledge-Based Systems with a
Knowledge-Based Assistant

ERIC SCHOEN, REID G. SMITH, MEMBER, IEEE, AND BRUCE G. BUCHANAN

1771

Abstruc&Intelligent assistants facilitate design and construction of
complex software. In this article, we propose a model for an intelligent
assistant to aid in building one kind of software-knowledge-based sys-
tems-and discuss a preliminary implementation. The assistant partic-
ipates in knowledge-based system (KBS) construction, including ac-
quisition of an initial model of a problem domain, acquisition of control
and task-specific inference knowledge, testing and validation, and long-
term maintenance of encoded knowledge. We present a hypothetical
scenario in which the assistant and a KBS designer cooperate to create
an initial domain model, and discuss five categories of knowledge the
assistant requires to offer such help. We then discuss two software
technologies upon which the assistant is based-an object-oriented pro-
gramming language, and a user-interface framework.

Index Terms-Knowledge acquisition, knowledge-based systems,
object-oriented programming, program editing, programming envi-
ronments, user interfaces.

I. INTRODUCTION

I NTELLIGENT assistants facilitate design and con-
struction of complex software. In this article, we pro-

pose a model for an intelligent assistant to aid in building
one kind of software-knowledge-based systems-and
discuss a preliminary implementation.

The development of knowledge-based systems (KBS’s)
is a complex process. Often applied to poorly understood
domains-for which standard programmatic solutions do
not exist-successful KBS development at present re-
quires collaboration between domain specialists and
knowledge engineers. The process is one of iterative re-
finement: the specialist describes domain knowledge to
the engineer, who in turn encodes that knowledge using
tools provided by a KBS “shell,” and then elicits further
knowledge from the specialist. The approach is far from
ideal; difficulties can arise in any of the many steps in-
volved in the transfer of knowledge from specialist to sys-
tem (e.g., in elaborating the domain knowledge, in en-
coding the domain knowledge, or in verbal
communication).

We view the central problem in KBS design to be
knowledge acquisition-moving domain knowledge into
a software system by whatever means. This is not simply
a problem encountered in the initial stages of design.

Manuscript received May 28, 1987; revised January 19, 1988.
E. Schoen and R. G. Smith are with Schlumberger Palo Alto Research,

Palo Alto, CA 94304.
B. G. Buchanan is with the Knowledge Systems Laboratory, Stanford

University Computer Science Department, Stanford, CA 94305.
IEEE Log Number 8824633.

Rather, it extends over the complete lifetime of a system.
Continuing expansion and modification of the system’s
knowledge base is driven by two factors: changing do-
main knowledge, and broadened scope of applicability.
Designers of existing KBS development environments
recognize this problem, and provide a wide variety of tools
to reduce its difficulty. Some of these tools-such as syn-
tax checkers-derive from conventional software engi-
neering; others-such as multiple knowledge representa-
tion paradigms, explanation facilities, and rule
debuggers-have evolved within the KBS community spe-
cifically to address the iterative and uncertain nature of
knowledge acquisition.

While contemporary KBS development environments
contain many tools to help manage the complexity of
knowledge acquisition, they offer little or no guidance on
how to use these tools. As a result, knowledge engineers
are often faced with a bewildering set of choices: how to
represent domain terminology and relations, how to de-
termine completeness of encoded domain knowledge, how
to enter additional domain knowledge without introducing
inconsistencies, and so on.

The central theme of this article is a new approach to
knowledge acquisition, in which an intelligent assistant
joins the domain specialist and knowledge engineer. This
third participant aids the engineer in using the tools of the
KBS development environment to encode knowledge of
the domain. Its support takes a number of forms: recog-
nition of both incomplete knowledge and opportunities for
further specialization and elaboration of domain knowl-
edge, consistency and “style” maintenance, automatic
“classification” of domain terms [111, debugging aids,
explanation concerning the evolution, current status, and
dependencies of the knowledge base, and validation of
encoded knowledge.

We have come to view the interaction between the
knowledge engineer and the engineer’s interface as a dis-
course, albeit one carried out in the “language” of the
designer’s tool. All too often, system builders are forced
to communicate with design aids at a syntactic level,
within a vocabulary that is difficult to learn and use. By
contrast, communication with a human assistant is at a
high level, in which a designer can assume the assistant
knows something about the design task and the system (or
device) being designed, as well as about the design tools.
For effective communication, each participant must be
aware of the preconceptions, intentions, and specialized

009%5589/88/1200-1771$01 .OO 0 1988 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12, DECEMBER 1988

vocabulary of the other. Further, much is often left un-
stated during discourse, to be inferred by the participants.
In light of this, we propose elevating the status of design
tools to that of intelligent assistants, which share this
“high-level communication” property with human assis-
tants.

A. The Need for Intelligent Assistance
Developers of early rule-based expert systems, such as

MYCIN [141 and EMYCIN [36], were simultaneously at-
tempting to understand conventions for building rule sets
and editing knowledge bases (KB’s) of rules. Work by
Davis [21] and Suwa L-561, and later Bennett [3], focused
on representing such conventions so that intelligent assis-
tance could be offered at the time of KB design or KB
debugging. In particular, the programs resulting from this
research encoded knowledge of the syntax of rules and
some knowledge of the semantics of the domain, in order
to guide acquisition and maintenance of rule sets.

Knowledge in EMYCIN-based systems was repre-
sented primarily in production rules. While constrained in
format, and intended to represent independent “packets”
of knowledge, these rules also proved surprisingly flexi-
ble. However, they frequently contained unforeseen in-
teractions. Thus, it was incumbent upon the knowledge
acquisition tools to prevent anomalous rules from becom-
ing part of the rule base. To this end, the EMYCIN in-
terface provided a number of services: syntactic analysis
could discover (and often correct) typographical errors;
semantic analysis could reveal subsumption or contradic-
tion relationships between new and existing rules; statis-
tics on rule application helped detect overly general or
overly specific rule premises.

While EMYCIN was successful in these specific areas,
no attempt was made to include in it more general “guide-
lines of good practice. ” Yet, such guidelines-concem-
ing efficiency, clarity, and elegance in rule-based system
design-were learned and communicated informally
among persons using EMYCIN and similar systems.

Unfortunately, the ramifications of some of these
guidelines were not totally understood at the time. For
example, knowledge engineers were encouraged to add
so-called “screening clauses” to rule premises; these
clauses defined a narrow context within which the re-
maining premise clauses made sense. The primary reason
for including such clauses in a rule was to prevent the
consultation system from asking for specific information
prior to establishing the general context for the question.
In Fig. 1, for example, the second clause is too specific,
unless the first clause establishes that the context is ap-
propriate. The first clause keeps the second clause from
being checked when it is not likely to be true.

In retrospect, the use of screening clauses complicated
the tasks of maintaining [2] and explaining [17] the rule
base. Having no explicit concept of screening clauses, the
EMYCIN knowledge acquisition interface could neither
detect when one was necessary in a newly entered rule,
nor could it identify the screening clauses in the existing

IF: 1) There is evidence for pseudomonas, and

THEN:
2) There are pseudomonas-type skin lesions

Fig. I. Sample premise of a MYCIN rule with screening clause.

rule base. EMYCIN was quite successful at syntactic ma-
nipulation of rule bases, but much less successful at se-
mantic manipulation.

The EMYCIN experience provided a number of valu-
able lessons concerning the design of knowledge-based
systems; principal of these is the need to represent infor-
mation explicitly and declaratively. Since then, we have
seen the power of this lesson applied in a number of dif-
ferent ways: Aikins’ CENTAUR system [2] is a reimple-
mentation of the rule-based PUFF system [31] in a mixed
rule-and-object paradigm, replacing context-setting
clauses by an explicit taxonomy of disease prototypes to
which rules are attached; Clancey’s NEOMYCIN system
[16] builds on Davis’ meta-rules [21] to explicitly repre-
sent diagnostic strategy, producing a system which can
explain and tutor medical diagnosis at a much more de-
tailed level than could MYCIN. When this information is
made explicit in the knowledge base, the designer’s as-
sistant can use it (e.g., for explanation [57] and for
knowledge base debugging [21]). Because much infor-
mation was left implicit in MYCIN, a substantial amount
of work was required when meningitis rules were added
to the existing bacteremia rule base [l].

We believe it is now possible to construct a more pow-
erful knowledge base designer’s assistant. This assistant
will act as an interface between a KBS designer (e.g., a
knowledge engineer) and a KBS development environ-
ment; it will not only provide the sort of passive support
provided by EMYCIN, but will also actively support en-
coding of domain knowledge.

B. Knowledge-Intensive Development Environments
Key progress in two areas-representational frame-

works and computing technology-has enabled us to con-
ceive of tools like the knowledge base designer’s assis-
tant. Object-oriented programming permits us to model
underlying domain principles with greater clarity and ef-
ficiency than was possible in purely rule-based formal-
isms. Recent advances in computing technology (e.g.,
powerful personal workstations) permit us the “luxury”
of combining interaction and inference while retaining a
reactive environment, so that usable interfaces can also
perform significant amounts of deduction.

The designer’s assistant forms part of a larger vision-
which we call a knowledge-intensive development envi-
ronment. This environment has two essential, interrelated
components; a representation and reasoning substrate,
and an interaction substrate. Extending the key principle
of knowledge-based systems-separation of domain
knowledge and problem solving methods-this approach
further separates problem-solving methods and interac-
tion.

The representation and reasoning substrate integrates

SCHOEN CI al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS 1773

distinct problem-solving subsystems involving objects,
rules, constraints, contexts, and explanation. This sub-
strate has knowledge of the use of the individual subsys-
tems, problem-solving methods, and basic knowledge of
the domains in which it is applied. Our current substrate
is based upon Strobe, an object-oriented language [50]. It
has been augmented by a rule interpreter [48], a constraint
manager, and a task configuration manager [32], [52].

The interaction substrate provides a set of tools for con-
structing interactive user interfaces to knowledge-based
systems. It must support at least three different perspec-
tives, corresponding to three different types of user: 1) the
developer/maintainer; 2) the domain specialist; and 3) the
end user. (Each of these, in turn, may require different
perspectives as well.) The substrate must provide a reac-
tive environment for developer/maintainers. It must allow
domain specialists to focus on the encoded domain knowl-
edge, hiding the underlying representational mechanisms,
and provide direct expression and interaction in terms nat-
ural to the domain. Finally, the substrate must permit the
construction of transparent and “easy-to-use” interfaces
for end users. These three interfaces may appear as sep-
arate tools, but in fact, they all share a common, under-
lying software architecture. Our recent work on Impulse-
86 [49], [51] indicates that it is possible to construct an
interaction substrate that provides this architecture, and
supports the needs of all three user groups.

The representation and reasoning substrate already con-
tains tools well-suited to user interface design. The ob-
ject-oriented paradigm used in domain knowledge base
construction is equally viable for encoding and organizing
interface constructs like editors, windows, menus, and
views. Knowledge base construction and maintenance is
itself a knowledge-based task, and thus, the interaction
substrate must be a knowledge-based system. Reasoning
mechanisms from the representation and reasoning sub-
strate can be brought to bear on the management of user
interaction. For example, constraint systems which sup-
port problem solving can be used to help maintain consis-
tency during user interaction. Rules can be used to infer
missing or dependent information. The same browsing
techniques used by the developer to explore the system
code can support graphical explanation-for developers,
domain specialists, and end users alike. Analogies to dis-
course can be drawn in the knowledge-intensive devel-
opment environment. The interaction substrate must rea-
son about the background, sophistication, and intentions
of its user, as well as the available domain knowledge, to
offer meaningful assistance. It also must often infer in-
formation left implicit by the user.

The complete knowledge-intensive development envi-
ronment we describe is as yet a research goal; however,
many of the individual components of the substrates do
exist and are in daily use. Our first step towards integrat-
ing the components into the complete development envi-
ronment is the knowledge base designer’s assistant, a
component of the interaction substrate. In Section II, we
describe our current efforts aimed at constructing this tool.

In the following sections, we describe the software tech-
nologies upon which it relies: in Section III, we discuss
the role of object-oriented programming; in Section IV,
we describe interaction substrates, using Impulse-86 as an
example. We present samples of the sorts of interfaces it
can construct and discuss its utility for knowledge-based
system design. We discuss related work in Section V, and
summarize our approach to knowledge acquisition in Sec-
tion VI.

II. EXAMPLE

In this section, we discuss the role of an active agent-
the knowledge-based designer’s assistant-in the design
process. When completed, it will offer the designer a wide
spectrum of assistance, ranging from instruction in use of
available tools to selection of representation, reasoning,
and interaction paradigms. The assistant will appear as an
expert-albeit computerized-user of the KBS develop-
ment environment. In this section, we describe the var-
ious services that will be provided by the assistant.

The interface between the designer and the assistant is
Impulse-86. The assistant monitors knowledge base ed-
iting commands issued by the designer, and interacts by
displaying suggestions in a set of windows. The assistant
is aware of all changes made to an evolving knowledge
base. (As with the original conception of the “Program-
mer’s Assistant” in Interlisp [28], the assistant can be
viewed as looking over the designer’s shoulder.)

Throughout this section, examples are drawn from a
hypothetical session in which the designer and assistant
collaborate on the design of the kernel of a semiconductor
fabrication knowledge base. (Information regarding VLSI
technology is taken from [58].) The dialog between the
designer and assistant is in reality graphical in nature,
driven by interaction with customized interfaces; for clar-
ity, we present the scenario as a transcript, in stylized
natural language, of that interaction. In Section IV, we
show some of the Impulse-86 editors which underlie the
scenario.

Our convention is as follows: text in italics is commen-
tary on the transcript; text in bold font is either input from
the designer, or represents concepts related to the knowl-
edge base under construction; text in roman font is output
from the assistant. The assistant uses bold font when re-
ferring to concepts in the designer’s knowledge base.

A. Assistance in Building a Domain Model
In this example, we consider only the early phase of

KBS construction. The major goal of knowledge acqui-
sition at this point is to build a model of the domain, in
terms of a vocabulary of domain-specific terms and rela-
tions. (This is a model-bused approach to knowledge ac-
quisition: we construct this model prior to considering
specific problem cases and the knowledge needed to solve
such cases. In the alternative case-based approach, spe-
cific problem cases are used to identify the necessary do-
main terms and relations.) Terms and relations from this
model are used in task-specific inference and control

1774 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

knowledge, as well as in explanations and conclusions
produced by the system. For purposes of illustration, we
assume this information is represented as objects in an
object-oriented language (see Section III).

During this phase, the assistant will guide acquisition
of terms and relations so as to produce a model which
encodes domain information in as clear, consistent, and
complete a manner as possible. By this, we intend the
knowledge base to contain little redundant information,
so that information pertaining to any group of objects is
associated with the maximally general object in the group.
Further, the knowledge base should contain no contradic-
tory information. Finally, the knowledge base should
contain all terms and relations which are used by infer-
ence and control rules, as well as system-generated ex-
planations.

Clearly, this represents an ideal, and probably unreal-
izable, goal. We expect inconsistencies and incomplete
information to become apparent as the domain model is
applied to actual problems. A designer cannot guarantee
that the domain model is complete before beginning to
add inference and control knowledge to the system (since
unforeseen terms and relations may be necessitated by
adding such knowledge). Instead, we expect the assistant
to employ heuristics that judge when enough vocabulary
has been acquired to begin the next phase of knowledge
acquisition. Acquisition and correction of the domain
model will not cease with the end of the early phase of
KBS construction; rather, it will likely continue in a fash-
ion interleaved with acquisition of inference knowledge.
The assistant will be able to detect when the addition of
an inference or control rule necessitates extending or cor-
recting the domain model, and temporarily switch back to
the model acquisition “mode.”

Our example shows the assistant helping the designer
during model acquisition by suggesting terms and rela-
tions to be specialized and/or elaborated. (The former in-
volves defining new, more specific, subclasses of objects
in the knowledge base; the latter, adding slots to existing
objects.) It will do this by analyzing the evolving domain
model to produce a set of goals, and then analyzing those
goals to produce a set of knowledge base modifications to
be made to achieve those goals. The modifications can
then be communicated to the designer in a number of
ways: as a description of the changes to be made to the
information encoded in the knowledge base (i.e., changes
to the meaning of the knowledge), as a description of the
changes to be made to structures in the knowledge base
(i.e., changes to the implementation of the knowledge),
or as a set of editing commands to be performed to change
those structures. These alternatives represent explana-
tions of deficiencies in the model, at increasingly lower
levels of abstraction; the assistant may choose the expla-
nation which is most appropriate, given knowledge of the
designer’s experience.

The assistant needs to employ at least five categories of
knowledge to be able to offer meaningful advice:

Type 1: Knowledge of “generic tasks,” (e.g., knowl-
edge of broad categories of application areas),

Type 2: Knowledge of knowledge base design (e.g.,
procedures for acquiring and elaborating knowledge, and
commonly-used knowledge base structuring techniques
[cliches]),

Type 3: Knowledge of the semantics of the language
used to encode the domain model (e.g., general knowl-
edge about relations, and knowledge about mapping be-
tween meanings and representation of meanings in the
language),

Type 4: Knowledge of the editing tools available to the
designer (e.g., available editing commands and their ef-
fects), and

Type 5: Knowledge of discourse (e.g., knowledge of
how to infer the goals, plans, and intentions of the user).

B. Hypothetical Design Session
We present an excerpt from the beginning of the hy-

pothetical design session, in which the designer and as-
sistant begin to encode the domain model. For each in-
ference made by the assistant, we indicate which of the
above types of knowledge has been used.

Assistant: What sort of task will this KBS be perform-
ing? I currently know about the general characteristics of
diagnosis, manufacturing, and design tasks.

Designer: Manufacturing.

The assistant now examines its generic model of
manufacturing, and>nds that manufacturing can be
viewed as a sequence of steps which consume raw
materials to produce a finished part (Type 1 knowl-
edge). The assistant now creates a goal of mapping
terms from this particular manufacturing tusk-
semiconductor fabrication-onto terms in the ge-
neric model (Type 2 knowledge).

Assistant: You could now add information to the do-
main model to describe the sort of Finished-Part being
manufactured.

These suggestions-which the designer is free to ig-
nore-appear in a number of forms. The assistant
maintuins a prioritized agenda of goals, which it dis-
plays in a window. The assistant operates continu-
ously “in the background, ” and reorders and redis-
plays its goal agenda in response to changes in the
knowledge base. The assistant makes other sugges-
tions by highlighting portions of Impulse-86 editing
windows already visible on the screen (e.g., the as-
sistant ‘s last suggestion could involve flashing the
Finished-Part node in the graph displayed in Fig.
2, accompanied by explanatory text, such as above).

Designer: How?

The assistant’s last suggested change was phrased
in terms of a change to information encoded in the
domain model. The designer asked how to implement
this change, which suggests to the assistant that the
designer does not understand how this information
is to be encoded (Type 5 knowledge). It explains the
change, in slightly less abstract terms-as changes

SCHOEN E, ol.: DESlGN OF KNOWLEDGE-BASED SYSTEMS

to the structure of the knowledge base (Type 3
knowledge).

Assistant: Create a subclass of the concept Finished-
Part.

Designer: How?

The assistant infers that the designer does not un-
derstand how to use the available editing tools (Type
5 knowledge). The assistant repeats the last sugges-
tion, in terms of Impulse-86 editing commands (Type
4 knowledge).

Assistant: Select the Create Object command in the
KB Commands menu attached to the KB editor for the
Manufacturing knowledge base. Respond to the Object
Names: prompt with the name of the Finished-Part pro-
duced by this manufacturing application, to the Object
Type: prompt with class, to the Generalizations: prompt
with Finished-Part, and to the Groups: prompt with any
symbol you choose, or simply with (return).

The designer carries out the above steps, and names
the specific kind of$nished part being produced.

Designer: Creates a subclass of Finished-Part called
Integrated-Circuit.)

Assistant: You should now add information which
names the Raw-Material used to manufacture Inte-
grated-circuits. Create subclasses of Raw-Material
using the Create Object command as you did previously.

(Types 2, 3, and 4 knowledge.)

Designer: (Creates subclasses of Raw-Material called
Silicon, Dopant, and Aluminum.)

At this point, the model contains information which
indicates that silicon, dopant, and aluminum are the
raw materials used to manufucture integrated cir-
cuits. Continuing in the same manner, the assistant
prompts the designer to specialize Step, thereby de-
fining the steps which compose the manufacturing
process. As this contributes nothing new to our ex-
ample, we leave out this part of the hypothetical de-
sign session.

In this example, Type 1 knowledge includes a knowl-
edge base which contains a generalized domain model of
manufacturing. Figs. 2 and 3 illustrate portions of this
model. Fig. 2 portrays a taxonomy of manufacturing terms
(e.g., Raw-Material and Finished-Part are both sub-
classes of Material). The assistant copies this taxonomy
for use as the kernel of the semiconductor model. Wher-
ever the assistant prompted the designer with, “You
should now add information. . . ,” it was suggesting a
term in the kernel domain model which could be special-
ized for semiconductor manufacturing. Fig. 3 indicates
that the Manufacture object is described by two slots,
Raw-Material and Finished-Parts. Each of these slots is
further annotated by a Role facet, which encodes how the
slot contributes to the meaning of the Manufacture ob-
ject; values stored in the Role facet are drawn from a small

Fig. 2

1775

Object

I I

Taxonomy of terms in the Manufacturing knowledge base

Synonyms:
Groups: Generic
Type: Class
Edited: 13-Dec.87 12.42:03 PST By: Schoen
Raw-Material:
Role: Input
Finished-Parts:
Role: Output

Fig. 3. Slots and facets in the Manufacture object

set of terms defined elsewhere in the manufacturing
knowledge base (e.g., Input indicates that the slot iden-
tifies a quantity which is an input to the manufacturing
process). Neither slot contains a value in the Manufac-
ture object; however, sometime later in the design ses-
sion, the assistant will suggest that the designer specialize
this object, and provide fillers for the slots.

Figs. 4 and 5 illustrate the state of the model sometime
after the end of the session excerpt. The designer has cre-
ated a subclass of Manufacture, called Process, which
represents the semiconductor manufacturing process. He
or she has also created a number of subclasses of Step,
each of which represents a distinct subtask in the manu-
facturing process. Fig. 4 displays the current taxonomy
of domain terms. Fig. 5 displays the input and output re-
lationships between materials in the actual manufacturing
process.

Knowledge of knowledge base design techniques,
Strobe semantics, and Impulse-86 editing commands
(Types 2, 3, and 4 knowledge) enables the assistant to
translate high-level goals into concrete suggestions. For
example, in order to explain its suggestion, “. . . add in-
formation to the domain model to describe the sort of Fin-
ished-Part being manufactured,” the assistant refers to
its knowledge regarding the representation of domain
terms. The designer is being asked to provide a term which
specializes the class Finished-Part for the semiconductor
domain. The knowledge that classes represent domain
terms, and that specialization relationships between do-
main terms are represented as subclass relations between
corresponding classes, enables the assistant to suggest that
the designer should create a subclass of Finished-Part.

When asked for further help, the assistant refers to its
knowledge of Strobe and Impulse-86 to direct the de-
signer to create a subclass of Finished-Part. From
knowledge of Strobe semantics, the assistant determines
that a subclass of Finished-Part will be represented as a
class object whose generalization is Finished-Part. From
knowledge of Impulse-86, the assistant describes the se-
quence of editing commands which will create the desired

1776 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12. DECEMBER 1988

\F.. _ nnshed Part-integrated-Circuit

r anufacture--Process

Wafer-Preparation

Fig. 4. Taxonomy of terms in the Semiconductor Manufacturing knowl-
edge base.

Edited: 13~Dec-87 16:37’49 PST By: Schoen
Raw-Material: Silicon, Dopants, and Aluminum

Finished-Parts: Integrated-Circufts

Fig. 5. Slots and facets in the Process object.

subclass. Note that advice is being stated in terms drawn
from the evolving domain model; we believe this in itself
is an important form of assistance. In-context advice is
more useful than that drawn from a printed manual, or
from a canned example domain. The instructions apply
directly to the development task at hand; the user is freed
from having to draw (possibly flawed) analogies between
example and real domains. Furthermore, since the assis-
tant knows the exact sequence of editing commands
needed to implement its suggestion, it could execute the
commands itself and relieve the designer of a potentially
tedious task. We expect such on-line help will ease the
process by which designers become experts at using the
tools provided by their environments.

Another use of Type 2 knowledge we envision involves
common practice in knowledge base design. We expect
the assistant to know about cliche’s-common patterns of
relationships between objects.’ Some of these cliches
(such as consistent refinement of slot values across a sub-
class taxonomy) represent “good practice” and will be
encouraged by the assistant; others (such as misuse of the
is-a relation) represent “bad practice” and will be dis-
couraged. When the assistant recognizes a developing
cliche, it will either offer to help complete the cliche, or
suggest an alternative knowledge base structure which is
more acceptable.

‘We use the term clicht in much the same manner as in KBEmacs [60].
However, our cliches are structural-abstracting relations between con-
cepts-while those of the Programmer’s Apprentice are procedura-ab-
stracting programs.

As an example of this sort of help, we present another,
short excerpt from our hypothetical design session. This
excerpt occurs sometime later in the session; in the in-
terim, the designer has added a number of new terms and
filled in a number of slots. See Figs. 6-8.

Assistant: I notice you’ve created a number of sub-
classes of Wafer-Preparation. Let’s look at Produce-
Electronic-Grade-Silicon. The Output of this Step is
Electronic-Grade-Silicon. Since Produce-Electronic-
Grade-Silicon is a subclass of Wafer-Preparation, and
Electronic-Grade-Silicon-Wafer is the output of Wafer-
Preparation, I would have expected Electronic-Grade-
Silicon to be a subclass of Electronic-Grade-Silicon-
Wafer.

Perhaps you’ve incorrectly defined Electronic-Grade-
Silicon, or perhaps you intended a relation other than sub-
class to hold between Wafer-Preparation and Produce-
Electronic-Grade-Silicon. Since for each of the sub-
classes of Wafer-Preparation, the value of Output slots
appears as the value of the Input slot of another subclass,
I suggest each of the subclasses is actually a substep of
Wafer-Preparation, ordered by the relation between the
Input and Output slots. Is this what you meant? .

A brilliant deduction by the assistant. How realistic
is it? The generic manufacturing task includes infor-
mation about likely relations that occur; substep re-
lations are very common in manufacturing, so the
assistant is justified in suggesting it as possible cor-
rection. Furthermore, the substep relation is a kind
of part-whole relation; the assistant knows that in
such relations, there will be a part or parts which
share structure with the whole. In this case, Wafer-
Preparation shares its input with Produce-Elec-
tronic-Grade-Silicon, and its output with Saw-Into-
Wafers. Thus, the assistant concludes that substep
is the appropriate relation.

In a narrowly circumscribed domain, like semi-
conductor manufacturing, it is reasonable to expect
that a small number of relation types will be appli-
cable; however, in the general case, we expect this
type of inferencing to become computationally in-
tractable. It is therefore important for the assistant
to have a facility for interacting with the designer to
select (or define) the appropriate relation type. For
example, if the assistant is not able to suggest a sin-
gle most likely replacement, or if the designer dis-
agrees with the assistant’s suggestion, the assistant
displays a menu of possibilities (potentially all man-
ufacturing relation types, or all known relation
types), and allows the designer to choose.2 We as-
sume here that the designer has agreed with the as-
sistant; the assistant then rearranges the knowledge
base and displays the result (Figs. 9 and 10).

In the preceding excerpt, the assistant recognized a
“misuse-of-is-a” cliche, by recognizing that the value

*The assistant could be expected to learn from its mistakes, using strat-
egies similar to those employed in the LEAP system [38].

SCHOEN er al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS

4 ilicon

aw-Material opant

Aluminum

inished-Part-integrated-Circuit

1

aterial

t

etallurgical-Grade-Silicon

lectronic-Grade-Silicon

lectronic-Grade-Silicon-Wafers

lectronlc-Grade-Silicon-Crystals

haped-Electronic-Grade-Silicon-Crystals

anufacture+rocess

reduce-Electrontc-Grade-Silicon
bject

row-Crystals

pitaxy

Action
i

xldation
tap

iffusion

1

afer-Preparation

ei

hape-Crystals

aw-Into-wafers

on-Implantation

lthography

ry-Etchmg

etalllzation

ackaging

Fig. 6. Later taxonomy of terms in the Semiconductor knowledge base.

Object: Wafer-Preparation
Sy&nyms:
Groups:
Type: Class
Edited: 13.Dee-87 17:02:39 PST By: Schoen
Input: Metallurgical-Grade-Silicon
Role: Input
Output: Electronic-Grade-SIIIcon-Wafers
Role: Output

Fig. 7. The Wafer-Preparation object

Object: Produce-Electronic-Grade-Slllcon
Synonyms:
Groups:
Type: Class
Edited: 15.Dec.87 15 12 09 PST By: Schoen
Input: Metallurgical-Grade~Slllcon
Role: Input
Output: Electronic-Grade~Slllcon
Role: output

Fig. 8. The Produce-Electronic-Grade-Silicon object

(Electronic-Grade-Silicon) of a slot (Output) in a sub-
class (Produce-Electronic-Grade-Silicon) was not a
subclass of the value (Electronic-Grade-Silicon-Wafer)
of the same slot in the superclass (Wafer-Preparation).
It further suggested a correction by finding a better clichC
(step-substep), which was both a likely candidate given
the domain, and a fitting correction, given the information
(input-output relationships) already encoded in the
knowledge base.

C. Further Opportunities for Assistance
The sorts of assistance we have described so far pertain

largely to the acquisition of the domain model-the vo-
cabulary of terms and relations-of a domain. However,

4 ilicon

aw-Material

t

opant

Aluminum

inished-Partlntegrated-Circuit

l

aterial etallurgical-Grade-Silicon

lectronic-GradeSilicon

lectronic-GradeSilicon-Waters

lectronic-Grade-Silicon-Crystals

haped-Electronic-Grade-Silicon-Crystals

anufacture---Process

afer-Preparation

bject pitaxy

xidation

iffusion

tep on-Implantation

Action

tt

ithography

ry-Etching

etallization

ackaging

w-Into-Wafers

ubstep
hapeCrystals

$

row-crystals

reduce-Electronic-Grade-Silicon

Fig. 9. Corrected taxonomy of terms in the Semiconductor knowledge
base

m
Object: Wafer-Preparation
Synonyms:
Groups:
Type: Class

Input: Metallurgical-Grade-SIllcon
Role: Input

Output: Electromc-Grade-Sllvcon-Wafers
Role: Output

Subtasks: Produce-Electronic-Grade-SIllcon. GrowCrystals. Shape-
:rystals. and Saw-Into-Wafers

Fig. 10. Corrected Wafer-Preparation object.

the role of an intelligent assistant is not limited to this
aspect of knowledge acquisition. The domain model is
not a complete knowledge base; it lacks necessary control
and task-specific inference knowledge. Clearly, opportu-
nities exist for an assistant to guide the knowledge engi-
neer and domain specialist through the acquisition of these
remaining classes of knowledge.3 We intend to explore
integrated acquisition of domain, control, and task-spe-
cific inference knowledge in the assistant. For these as-
pects of knowledge acquisition, the assistant will require
knowledge about AI problem solving methods and strat-
egies.

The assistant can also play a role in the testing and val-
idation of a KBS; once the knowledge base contains
enough information, the assistant is able to record the re-

‘The process is most likely not a sequential ordering of phases. W e
believe that domain, control, and task-specific inference knowledge will be
acquired in an interleaved fashion; attempts to correct deficiencies in one
class of knowledge may highlight deficiencies in one or both of the other
classes.

1778 IEEE TRANSACTlONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12, DECEMBER 1988

sults of individual tests and (perhaps) to generate test cases
(by examining the encoded knowledge). As additional
knowledge is acquired, the system must continue to suc-
cessfully treat prior test cases. The assistant can play a
useful role in checking that newly added knowledge does
not conflict with existing knowledge-that the evolving
knowledge base remains self-consistent. As in TEIRE-
SIAS [21] and LEAP [38], failed test cases can identify
missing and/or incorrect knowledge. Furthermore, the as-
sistant can record dependencies between parts of the
knowledge base; it is continuously involved in the evo-
lution of the knowledge base and thus has a historical rec-
ord of the development. This information can be used in
two ways: the assistant can explain how a change to one
part of the knowledge base will affect other parts, and can
also undo changes, to allow alternate attempts at knowl-
edge base evolution. As we have stated, maintenance of
the knowledge base in this manner is likely to continue
throughout the lifetime of a knowledge-based system.

In the next two sections, we discuss the two enabling
technologies upon which our knowledge-intensive devel-
opment environment rests: Strobe, an object-oriented pro-
gramming language, and Impulse-86, a framework for
constructing user interfaces. Whereas the assistant is an
active tool, these are passive substrates which underlie it.

III. OBJECT-ORIENTED PROGRAMMING

Object-oriented programming is the foundation of our
knowledge-intensive development environment. It con-
tributes towards a programming methodology, which in-
tegrates diverse components of the development environ-
ment, and a representation language, which models both
domain-level and development environment knowledge.
The use of object-oriented programming for building ex-
pert systems and other knowledge-based applications, has
been previously described [23]. In this article, we de-
scribe the role of object-oriented programming in building
development environments for knowledge-based systems.
In this section, we provide a brief overview of the object-
oriented paradigm.

KBS’s typically evolve in an incremental refinement
process characterized by an exploratory programming
style [27], [141, [46]. The representation and reasoning
substrate is central to the KBS developer/maintainer in
managing the complexity of the evolving system. A clear
conceptual model of the domain of application is essential
for managing this complexity.

Object-oriented programming has been found by sim-
ulation specialists, cognitive psychologists, and artificial
intelligence scientists to be very useful in modeling-of
physical systems, human systems, and artificial systems.
In constructing software systems to model complex phe-
nomena, it is advantageous to organize computation
around programming constructs whose internal structure
and interrelationships explicitly reflect those of constructs
in the physical world in which the resultant systems are
to operate. Clarity is especially important because of the
inherent complexity of the physical world-this complex-

ity must be managed in a software system if it is to be
understandable, explainable, extensible, maintainable,
and reusable.

Furthermore, the object-oriented style encourages mod-
ular code and encapsulation with well-defined interfaces.
Inheritance of properties simplifies code-sharing. This
leads to space-efficient code and to ease of maintenance
and specialization, as has been found in a variety of sys-
tems [25], [61], [6]. In addition, many traditional KBS
representational entities (e.g., rules, constraints) may be
encoded as objects and invoked in a uniform manner-via
messages.

A clear model of the evolving system is as important to
the domain specialist as it is to the KBS developer. Ob-
jects appear to be a natural and understandable knowledge
organizing mechanism to humans not normally involved
in computation [18]. The concept of an object as a pro-
totype for encapsulating information-both data and pro-
cedures-is well-understood and used by humans, as are
the concepts of classes and instances, taxonomies-and
taxonomic inheritance of properties (along with a number
of other forms of inheritance).

A. Background
In an object-oriented software system, the central con-

struct is the abject-a data structure similar to a record.
In a medical consultation system, such as NEOMYCIN
[161, we find objects that correspond to important medical
concepts, like patient, drug, organism, disease, and so
on. Objects are linked together in a variety of relation-
ships in an object-oriented system. In NEOMYCIN, it is
explicitly recorded that viral meningitis is a kind of men-
ingitis, which is in turn a kind of infection. This hierar-
chical a-kind-of relation-also called the taxonomic rela-
tion-is carefully supported by object-oriented
programming languages. Unlike the simple support pro-
vided for records by ordinary programming languages,
these object-oriented languages support inheritance of
properties. If it is recorded that meningitis is an infection
situated in the cerebrospinal fluid (CSF), then it is not
necessary to separately record that viral meningitis is also
situated in the CSF. This information is available--truns-
pare&y to the modeler-via inheritance.

In object-oriented programming, the structure of the
knowledge used in the software system is defined by the
structure of the physical world-and not by the specific
task at hand. Contrast this with the normal procedural
structuring used in almost all computer programs. Be-
cause the computational structure is determined by the
structure of the domain being modeled, object-oriented
systems are more readily understood by both domain spe-
cialists and programmers. The objects themselves provide
a natural atomic stmctutre-a level of detail appropriate
to the world being modeled. The relationships that link
the objects-especially the hierarchical taxonomic rela-
tionship-lend increased structure. The collection of ob-
jects that model a particular domain, often called a knowf-
edge base, captures the static knowledge of that domain.

SCHOEN ef rd. DESIGN OF KNOWLEDGE-BASED SYSTEMS 1779

The knowledge base provides a kind of computational
skeleton for a simulator, a reasoning system, or indeed
any procedure that operates on it.

Over the years a number of object-oriented languages
have been developed. One of the earliest was Simula, an
extension to Algol designed for simulation [20], [5]. Sim-
ula defined much of the vocabulary of object-oriented
programming. During the 1970’s, Smalltalk was devel-
oped as a vehicle for making computers easier to use [24].
It has become the best-known object-oriented language,
in large measure due to the revolutionary impact it had on
integrated programming environments and user inter-
faces. In the artificial intelligence (AI) community, a
number of object-oriented languages were developed to
attack problems in vision and natural language under-
standing (e.g., KRL [7], FRL [44]). (The AI languages
were often called frame-based at the time [37].) Whereas
Simula and Smalltalk were independent, free-standing
languages, most of the AI languages were embedded in
an underlying programming language, Lisp. Commercial
systems have started to become widely available in recent
years (e.g., KEE [30], Loops [6]). Object-oriented pro-
gramming concepts have started to appear in traditional
programming languages; C + + [55] and Objective-C [191
are both object-oriented extensions to the standard C lan-
guage.

B. Features of Object-Oriented Programming
Languages

We devote the remainder of this section to the salient
features of object-oriented programming languages. We
concentrate on the features useful for modeling the static
structure of a domain. We do not address the issue of mes-
sages and computation with an object-oriented skeleton.
See [39], [54] for discussion of these issues.

The knowledge base designer’s assistant itself is writ-
ten in Strobe [50], a Lisp-based object-oriented program-
ming language. Strobe is representative of many such lan-
guages, which provide a powerful set of tools that
augment Lisp; moreover, such languages can themselves
be embedded in higher-level systems that offer greater
representational structure and modeling complexity.
Strobe has been implemented in both Interlisp-D and
Common Lisp; a subset of Strobe has been implemented
in C.

Basic Concepts: To begin, we define the basic data
structures. From largest to smallest level of granularity,
the structures commonly provided by Lisp-based object-
oriented languages are the following:

Knowledge Base: A taxonomically organized collec-
tion of objects of a domain. A knowledge base typically
represents a model of some physical domain or system.
Each knowledge base is a separate namespace of objects.
An application may be organized around several knowl-
edge bases.

Object: A record-like structure which encapsulates a
coherent set of related data and procedures. An object be-
longs to a particular knowledge base. It typically repre-

sents a single concept in the domain or system modeled
by the knowledge base. An object is identified by a unique
name within a knowledge base-objects of the same name
may exist in different knowledge bases.

Each object has an associated type. Objects that repre-
sent particular, unique individual entities in the model are
called individual or instance objects. Objects that repre-
sent a set of entities (either entities that actually exist in
the model or entities that could potentially be con-
structed), are called class objects.

Slot: A component of an object. A slot can represent a
property or attribute of an object, a procedure that the
object can execute (often called a method) to exhibit some
behavior of the object, or a relationship between the ob-
ject in which the slot resides and one or more other ob-
jects.

Facet: A component of a slot-a place to encode an-
notations regarding the meaning of the slot with respect
to its object. Many object-oriented languages define a da-
tatype facet, which indicates what type of datum is (or
can be) stored as the value of the slot. Applications can
further define their own facets (as in the role facets illus-
trated in Fig. 3).

Taxonomic Structure in Knowledge Bases: Objects
form the atomic structure of knowledge bases. Additional
structure is imposed by relationships that exist among the
objects. Object-oriented languages support a variety of re-
lationships-some of which are hierarchical. The fore-
most relation supported by all object-oriented languages
is the taxonomic relation, sometimes also called the a-
kind-of, is-a, or generalization/speciJication relation. Fig.
11 shows a taxonomic hierarchy associated with the as-
sistant’s knowledge of set-theoretic properties of rela-
tions (a form of Type 3 knowledge discussed in Section
II).

From the figure, we see that Transitivesymmetric-
ReflexiveRelation is a kind of Relation. This is an
expression of the universally quantified conditional:

VX(TransitiveSymmetricReflexiveRelation (X)

-+ Relation (X)) ;

that is, if X is-u TransitiveSymmetricReflexive-
Relation, then X is-u Relation. We can also say that
TransitiveSymmetricReflexiveRelation is a-kind-of Re-
lation. In addition, the taxonomic relation is transitive.
So, because:

VX(EqualityRelation (X)

+ TransitiveSymmetricReflexiveRelation (X)) ,

we can conclude that:
VX(EqualityRelation (X) + Relation (X))

Explicit representation of hierarchical taxonomic relation-
ships is a powerful conceptual modeling tool. It has been
used extensively in the physical sciences as a way of
bringing order-through classification-to systems ob-
served in the real world. For computational models, at the

1780 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12, DECEMBER 1988

Fig. 1 I. Taxonomic hierarchy of relations.

very least, it imposes a perspicuous structure on the do-
main knowledge being represented. As such, it helps to
manage the complexity inherent in models of substantive
real world systems.

Most object-oriented languages support taxonomic lat-
tices; that is, objects may have multiple generalizations.
In Fig. 12, for example, the transitive, symmetric, ,and
reflexive characteristics of relations are represented sep-
arately. This permits useful partitioning of information,
advantageous because it fosters clarity and because it re-
duces the amount of information that otherwise would
need to be duplicated in several classes. In the figure,
transitivity information is stored in TransitiveRelation,
rather than being duplicated in all transitive relations (see
[54] for another example). Taxonomic lattices are often
called tangled hierarchies. It is possible to get by without
support for multiple generalizations. Many simple object-
oriented languages do not support them because they in-
crease the complexity of the implementation of the object-
oriented language itself. However, if multiple generali-
zations are not supported, the application designer is often
forced to write application-specific code that amounts to
the same thing. Furthermore, the designer must spend time
worrying about these situations rather than concentrating
on the already difficult enough task of constructing an ac-
curate and useful model.

Property Inheritance: If explicit representation of tax-
onomic relationships served as nothing more than a con-
ceptual modeling tool, it would be very powerful. But, it
has an additional purpose. It serves as the basis for prop-
erty inheritance. For example, in the relation system, if
we record that descendants of ReflexiveRelation are re-
lations in which reflexivity holds, then we need not sep-
arately record that WeakPartialOrderRelation and
EqualityRelation are reflexive. This fact is transparently
accessible via the inheritance mechanisms supported by
the object-oriented language. Inheritance of properties
follows naturally from the the universally quantified con-
ditions noted earlier: if X is an EqualityRelation-u-kind-
Of ReflexiveRelation-then the properties of
ReflexiveRelation are also properties of all Equality-
Relations and hence are properties of X. Were we to ask
the question: Are instances of EqualityRelation rejex-
ive?, an object-oriented system would respond affirma-
tively .

Inheritance is not only a powerful conceptual modeling
tool; it is also a powerful programming tool. It encour-
ages modularity of design through elision and rejnement.
We achieve elision of description of objects through in-
heritance, which promotes a compact representation-only
those properties of an object which are specific to the ob-
ject itself need be explicitly stated. We rejine properties
within specializations, thus simplifying incremental

TRICT.PARTIAL-ORDER-RELATION RELAT,DN~~~~~~~~DRDER.RELATloN
Fig. 12. Taxonomic lattice of relations.

knowledge base extension; properties generic to an ob-
ject’s class can be replaced by similar, but more specific
properties, appropriate to a new subclass, independent of
extensions and refinements in different branches of the
taxonomic hierarchy.

Classes and Instances: Figs. 11 and 12 show only class
objects. A class object defines the generic properties of
all of its specializations. Since Relation is a class object,
it defines a set of properties for all subclasses and in-
stances of Relation. A class object may also define de-
fault values for the properties it defines, although this is
not necessary. Subclasses and instances of the class are
assumed to have those values. For example, assume Re-
lation contains a detect slot which holds rules valid for
detection of equality relations. The rules in the detect slot
are by default assumed to be valid for detection of all
subclasses and instances of Relation. If a default value is
not specified for a property, nothing is assumed about its
value in subclasses and instances.

In many object-oriented languages, default values may
be overwritten, refined, or cancelled in specializations.
For example, the detect slot of Relation may be specified
as unknown; however, it may be refined in the class
EqualityRelation to (rule184 rule116 . . .). Defaults are
very useful in knowledge-based systems-they can be
used to make weak inferences in the absence of more spe-
cific information-and later overridden as more specific
information becomes available.

Most object-oriented languages treat the is-a relation,
defaults, and cancellation informally. For example, the
is-u relation often conflates the notions of a prototypical
member of a set and a universally quantified conditional.
Further, permitting cancellation of inherited defaults can
weaken the descriptive power of an object-oriented rep-
resentation language (simply because an object matches
the description of some class X, it may not necessarily
match the description of Y-a superclass of X-due to pos-
sible cancellation of properties in X); hence, if an object-
oriented language allows cancellation, we can only use
the taxonomic hierarchy for weak inferencing. See [9] and
[8] for a detailed discussion of these issues.

IV. IMPULSE-86: SUPPORT FOR USER INTERACTION

Impulse-86 [49] is a Strobe-based tool which supports
user interface design. Responsible for the low-level “me-
chanics” of user interface support, it is a key component
of the interaction substrate in the knowledge-intensive de-
velopment environment. In this section, we present a set
of requirements for user interfaces and user interface

SCHOEN ef al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS 1781

toolkits, and discuss how Impulse-86 fulfills these re-
quirements. By way of illustration, we present four ex-
amples of Impulse-86 interfaces, each intended to support
the activities of a specific class of user. We then discuss
the framework in which these interfaces are constructed,
using the examples to illustrate the main points.

Impulse-86 consists of an extensible kernel, providing
support for the basic requirements of window-oriented
user interfaces, and a set of application-specific exten-
sions built around the kernel. It is the third in a series of
systems beginning with Impulse [45]; while the first two
were designed for the explicit purpose of editing Strobe
knowledge bases, Impulse-86 is a general-purpose user
interaction framework. It enables developers and end users
to construct customized, domain-specific interfaces for
their systems, without being experts in interactive graph-
ics (knowledge base editing is a specialized extension).
Our approach is to provide an extensive set of “building
blocks,” and a uniform framework in which to assemble
them.

Although Impulse-86 has evolved from a knowledge
base editor to a user interaction framework, we continue
to view its kernel task as a form of editing. We take the
point of view that editing entails many kinds of interac-
tions between a user and a software system. The user
views the state of the system, and controls or changes the
state of the system. An editor is an entity that mediates
these viewing and controlling interactions-presenting the
user with a view of the system and effecting the desired
control. This definition encompasses traditional text ed-
iting, browsing, program development, debugging, and
end-user interaction.

Knowledge-based systems typically consist of many
complex structured objects, connected by several rela-
tionships, and are intended to model richly structured do-
mains. As a result, both the KBS developer and end user
are typically interested in interacting with (i.e., under-
standing, changing, extending, and using) three major
kinds of entities: objects and their internal structure, re-
lationships among objects, and complete systems of ob-
jects, relationships, and code-including their dynamic
behavior.

Based on the considerations thus far presented, we have
been led to the following design goals for interfaces con-
structed with Impulse-86:

l Effective integration and use of high resolution bit-
mapped displays, pointing devices, and keyboards.

l Flexible support for varied methods of user interac-
tion for both viewing and controlling systems (e.g.,
graphics, animation, menus, pointing and smart typein,
with facilities like partial name recognition, spelling cor-
rection, and line editing). The editor should support in-
teraction with domain-specific information in a form nat-
ural to an end user familiar with the domain.

l Specific aids for browsing. A user should be able to
quickly examine an evolving knowledge base, alternate
hypotheses constructed by a KBS, user-defined interob-
ject relationships, and so on.

l Unlimited interaction contexts for viewing and
changing different parts of a system simultaneously.

l Programmatic access to interaction mechanisms. A
user should be able to call upon building blocks in the
editor in the midst of normal programs.

l Organizational support for customization and exten-
sion.4

There are several other useful goals that Impulse-86 it-
self does not address, including user modeling, assistance
to a user in managing trouble, recovery from error, check-
pointing, security, and so on. Extensions along these di-
mensions (such as the designer’s assistant we discussed
in Section II) are more appropriately constructed on top
of the kernel environment, rather than inside it.

Fig. 13 is a snapshot of a typical Impulse-86 screen, in
which six interaction contexts are active. Many Impulse-
86 interfaces follow a convention in which information is
displayed in a central window, to which one or more
menus are attached. For example, the small window in
the upper right comer of the screen, labeled “Impulse-
86,” displays the names of each loaded Strobe knowledge
base; the menu attached to this window contains com-
mands related to loading, storing, and editing Strobe
knowledge bases. The editor in the bottom right comer of
the screen is a Strobe knowledge base editor; the central
window contains information about the knowledge base,
the upper menu contains knowledge-base editing com-
mands, and the lower menu contains an alphabetized list
of each of the objects in the knowledge base. Selecting an
object from this latter menu provides a “focus” for some
commands (e.g., the Edit Object command) in the for-
mer menu. In the following, we discuss the remaining ed-
itors in Fig. 13 in greater detail.

A. Examples of Impulse-86 Editors
In this section we show a number of brief examples of

specialized Impulse-86 editors. Our aim here is to dem-
onstrate the diversity of interface styles that can be sup-
ported by the framework. Our examples depict editors ap-
plied to knowledge bases which form part of the designer’s
assistant, and which encode information about both rela-
tion types and management of task agendas.

7’he Object Editor: The object editor is used for editing
a single Strobe object and its internal structure. Fig. 14
depicts a user’s view of the standard object editor; the
object being edited encodes knowledge about relations.

The object is presented to the user in a window with
attached menus. The first five lines show the values of
properties that are common to all objects; the remaining
lines display the object’s slots. The name of a property or
slot is shown in boldface; if a slot has synonyms, they are
enclosed in set braces; the slot’s value (if any) is shown
in lightface, following a colon; (t) indicates that the slot

‘Stallman defines extensibility relative to EMACS: “, the user should
be able to add new editing commands to change old ones to fit his needs,
while he is editing” 1531. We go beyond ron~mand extensibility, aiming
for extensibility with respect to what is viewed, how it is viewed. and how
it may be changed.

1782 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12, DECEMBER 1988

Fig. 13. Example screen during a typical Impulse-86 editing session

Fig. 14. Object editor

is inherited from a more general object. We have found
these conventions useful, but they are only defaults. A
user can override them to customize the way this infor-
mation, or other information, is presented.

The top two command menus enable a user to (for ex-
ample) rename the object, change any of the slots, create
new slots, delete or rename slots-standard editing oper-

ations. A small mark to the right of a command indicates
the existence of subcommands that extend the function-
ality of that command. We have adopted the discipline
that a left mouse button selection invokes the command
shown, while a middle mouse button selection pops up a
menu of subcommands (or a menu of arguments that fur-
ther specify a command).

The two menus show the objects most closely related
(taxonomically) to the object being edited; they can be
used to invoke a new editing context in which one of those
relatives is the center of attention.

Items in the display may be selected with the mouse as
arguments to a command. A selection stack is maintained,
with individual selections (foci) indicated by different
styles of highlighting. As with other defaults, the high-
light styles may be changed by the user.

A variant of the object editor is visible in the lower left
comer of Fig. 13. This variant-the fast object editor-is
designed for more experienced users of Impulse-86. It
displays precisely the same information as does the stan-
dard object editor, but presents no command menus. In-
stead, these menus are available as “pop-up” menus, and
appear when a mouse click occurs over the object name
or any of the slot name captions. Because the fast object

SCHOEN P, al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS

TIONS: IMPULSE-%-RULE

an-68 17:Ol 38 PST By: Schoen

EXISTS ENTRY
E ENTRIES AGENDA)

oth’,“P,‘f;VEETRY ‘ENTRIES AGENDA)

TRANSLATION[TEXT):

(1) There exists an element from the ENTRIES of AGENDA <ENTRY>
such that the OPERATION of ENTRY is ‘OPERATION’. and
such that the EDITEE 01 ENTRY is ‘EDITEE’

I THEN:
(1) Remove ENTRY from the ENTRIES of AGENDA

DOCUMENTATlON(TEXT](‘):
SOURCEt-TEXT)(^):
AUTHOAITEXT)(‘):
BREAK[EXPR](,‘):

1783

Fig. 15. Rule editor

editor spends no time creating permanent menus, it can
be displayed faster than can the standard object editor;
furthermore, since it obscures less screen space, more of
these editors can be made visible without occluding one
another.

The object editor is used mainly by the knowledge base
maintainer-typically a computer scientist-although it
can also be useful to a domain specialist. It offers a view
and interaction style for the domain knowledge encoded
by the system-more as a computational entity than a
mathematical entity (i.e., the implementation of the math-
ematical concept of a relation as a software object en-
coded in an object-oriented language). In later examples
we will see other ways of interacting the domain knowl-
edge-each appropriate to a specific task.

The Rule Editor: The rule editor is used for editing a
single Strobe rule. Fig. 15 depicts a user’s view of the
standard rule editor; the rule being edited encodes a single
piece of knowledge used by the designer’s assistant in
managing task agendas. This editor is commonly used by
developers and by domain specialists. It is not intended
for end-users of a knowledge-based system.

A Strobe rule is encoded as an object. As a result, the
rule editor is rather similar to the object editor. In this
case, however, commands specifically useful for dealing
with rules replace or extend the basic object-related com-
mands (e.g., the Translate Rule command, used to gen-
erate the English translation of the rule shown at the bot-
tom of the figure). Furthermore, the slots of the rule are
grouped together and captioned in a different manner. For
example, the slots that encode left-hand side conjuncts are

grouped under the IF: caption. Similarly, the slots that
encode right-hand side actions are grouped under the
THEN: caption.

In the figure, we see another standard attention-focus-
ing mechanism supported by Impulse-86. Some com-
mands in the top two menus on the left-hand side of the
main window are grayed over. If a user selects a datum
for which these commands are relevant, then Impulse-86
will make them visible to allow their selection. (Another
example of this behavior is also visible in the top two
menus of Fig. 14.)

The Graph Editor: Graphs are a natural representation
for viewing relationships between and among several ob-
jects in a system. Impulse-86 provides a simplified, ob-
ject-oriented interface to a variety of graphing primitives,
so users can edit interobject relationships graphically.

A graph editor displays some or all of the objects tied
together by a relationship (or set of relationships). For
example, the graph editor in Fig. 16 shows a taxonomic
hierarchy associated of relations. Each node represents
one object. More specialized objects appear to the right
of their generalizations.

Graph editors enable a user to see and rearrange the
overall structure of the system as implied by the graph
relationship. Through pop-up menus, the user can add or
delete links, and can easily invoke an interaction context
that shows more detail for any object in the graph. Graph
editors are like other editors with regard to defaults and
foci. A user may further customize the graph editor with
respect to fonts, layout (e.g., vertical versus horizontal),
link types (e.g., dashed versus solid), node display (e.g.,

1784 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 12. DECEMBER 1988

cam*>
.,.a . --. Edtt As

Progeny ’ UMERIC-WEAK-PARTIAL-ORDER[Z]
Ancestry .

G

E. KB Strucf Graphs ONCEPT-WEAK-PARTIAL-ORDER[Z]
Show References

Rename Object
ET-THEORETIC-WEAK-PARTIAL-ORDER[Z]

Pm, Ob,ec, qUMERIC-STRICT-PARTIAL.ORDER[Z]
TF Delete lhls Ob,ect I

RELATION Edit Oblect
-ONCEPT-STRICT-PARTIAL-ORDER[4]

%ET-THEORETIC-STRICT-PARTIAL-oRDER[~]

bitmaps versus names), amount of information presented,
and so on. These customizations typically require no more
than simple declarative changes to default values.

Impulse-86 has a number of built-in graphing relation-
ships, such as specialization and generalization. In addi-
tion, it supports construction of customized graphs, based
on user-specified functions, that, given a datum (e.g., an
object), generate its successors one graphic link away
(e.g., according to a part-of relationship). Impulse-86
takes care of the mechanics of computing and displaying
the transitive closure of the graph generator function,
making the nodes of the graph sensitive to selection with
the mouse, attaching the menus, and so on.

The views offered by graph editors are useful to both
developer/maintainers and to domain specialists. In ad-
dition, we will later see how some graphs can be useful
to end users of systems. For example, the graph of Fig.
16 is particularly useful to a domain specialist in under-
standing how much of the standard set-theoretic relation-
ship vocabulary has been encoded. Such graphs are per-
vasive in the sciences. They help show skeletal models of
physical domains.

The SpeciJcation Editor: The forms of assistance we
discussed in Section II require the assistant to understand
an evolving domain model as encoded by the designer in
an object-oriented framework. The assistant must “ab-
stract” the domain model from the implementation-level
data structures in the knowledge base. It depends on the
designer having chosen an appropriate grain-size at which
to represent the model.

An alternate approach we are considering involves pro-
viding an Impulse-86 editing interface customized to the
task of entering terms and relations in the domain. This
interface would encourage the designer to “sketch” in-
formation at an appropriate level of granularity, and would
prevent him or her from entering the implementation-level
knowledge base directly. Instead, the assistant would pro-
duce the knowledge base by analyzing information re-
corded by the custom interface.

Fig. 17 illustrates our current implementation of the
specification editing interface. The interface allows a de-
signer to enter the primary terms and relations of a do-
main, without having to declare how the terms and rela-

Fig. 17. The specification editor.

tions are actually encoded in a knowledge base. The editor
consists of a “workspace” (the main window), and two
iconic menus. The operations menu selects the editor
mode; from top to bottom, the available modes are select
concept or relation, create concept, delete concept,
create relation, and delete relation. The link type menu
in the middle selects the type of relation to be created
when the editor is in create relation mode. There are two
predefined relation types-subclass (i.e., the is-a rela-
tion) and subpart (for encoding part-whole decomposi-
tions). The designer can define additional relation types
by selecting the (New Link Type) entry in the fink type
menu; for example the successor relation was defined in
this manner. The workspace depicts a collection of terms
and relations; in Fig. 17, for example, the Process Step
term has two subclasses: Wafer Preparation and Epi-
taxy. Wafer Preparation has a successor-Epitaxy-and
a subpart-Purify MGS to EGS.

When the designer is satisfied with the model depicted
in the workspace, the assistant constructs a Strobe imple-
mentation of the model. Once again using its knowledge
of KBS design techniques and of Strobe semantics (Types
2 and 3 knowledge), the assistant chooses to implement
domain terms as Strobe classes, the relations between
terms as slot values. Knowledge about relations (Type 3
knowledge, such as that illustrated in Section III) can help
characterize new relations defined by the designer. For
example, if the successor relation is seen to be transitive,
irreflexive, and asymmetric, the assistant can assume the
relation is a strict partial order; this information may be
useful later when verifying the consistency of information
encoded in the knowledge base, as well as in presenting
a graphical depiction of such information.

We believe this type of interface will help the designer
concentrate on specifying domain principles, rather than
computational entities. The designer is not required to de-
clare how terms and relations are implemented (i.e.,
which are the objects and which are the slots); the actual
encoding of the domain knowledge can be performed
later, at least partially by the assistant. By contrast, an
interface composed of Impulse-86 object and slot editors

SCHOEN er al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS

would immediately force the designer to decide how to
represent terms and relations, a decision which might have
to be reconsidered later as the knowledge base evolves.

B. The Impulse-86 Substrate
The Impulse-86 substrate contains five major building

blocks: Editor, EditorWindow, PropertyDisplay, Menu,
and Operations. Each building block, or part, is a Strobe
object in the Impulse knowledge base. Each embodies
special knowledge that enables it to fulfill a particular role
in an interface (described below).

Editor: The editor is the central object. It mediates in-
teractions between the user and the editee-the domain
focus-typically a part of a knowledge base (analogous to
the Smalltalk model [24]). Together with its components,
it dejines a user interface-the way information is viewed
and controlled.

Editor instances are built from an editor class by tem-
plate instantiation. By instantiating a separate editor for
each editee, Impulse-86 enables an unlimited number of
independent interaction contexts to exist simultaneously.

Editors have components drawn from any of the five
major classes (or from additional classes defined by a
user). Editors are explicitly permitted to have other edi-
tors as components (and so on, in a recursive fashion).
Support for recursive decomposit ion is important. It en-
ables the construction of an editor whose composite struc-
ture parallels the composite structure of its editee. Knowl-
edge about the way composites are structured in the
application domain may therefore be embedded in the
structure of its interfaces.

Fig. 18 shows the editor structure for the class of object
editors. Each object editor instance is generated from this
template. Fig. 19 shows the instance corresponding to the
object editor shown in Fig. 14. In both graphs, an arc
indicates that the object on the right is a component of the
object on the left. Instantiated components are shown in
lightface; non-instantiated components are in boldface.
(Figs. 18 and 19 were generated from Impulse-86 spe-
cialized graph editors.)

In this example, ObjectEditor and SlotEditor are both
editors. The ObjectEditor mediates interactions with the
object-specific properties (e.g., the object’s name and
synonyms), while the SlotEditor mediates interactions
with the slot-specific properties (e.g., the slot’s name and
synonyms).

Subeditors can be dynamically added to, and removed
from, an instantiated editor. Impulse-86 allows a user to
specify (via a declaration or a method) a mapping between
a class of objects in a domain knowledge base and an ed-
itor class to be used for them (e.g., the RuleEditor for
Rule objects).

EditorWindow: The editor window manages the screen
context of a collection of editors. It is responsible for per-
forming the usual window operations (e.g., scrolling, re-
painting, reshaping). It also maintains a correspondence
between editees and the window regions in which the ed-
itees are displayed. This enables both data selection by

I785

BJECTNAMEDISPLAY

BJECTSYNONYMSDISPLAY

BJECTGROUPSDISPLAY

BJECT-TYPEDISPLAY

BJECTEDITEDDISPLAY

BJECTEDITORWINDOW

OBJECTEDITOR BJECTSLOTSDISPLAY

LOTEDITORCOMMANDMENU

LOTEDITOROPERATIONS

BJECTEDITORCOMMANDMENU

BJECTANCESTORSMENU

BJECTSPECIALIZATIONSMENU

BJECTEDITOROPERATIONS

Fig. 18. Components structure of the object editor.

BJECTNAMEDISPLAY

BJECTSYNONYMSDISPLAY

BJECTGROUPSDISPLAY

BJECT-TYPEDISPLAY

BJECTEDITEDDISPLAY

BJECTEDITORWINDOW-45

3BJECTEDITOFb4 BJECTSLOTSDISPLAY

LOTEDITORCOMMANDMENU-48

LOTEDITOROPERATIONS

BJECTEDITORCO ANDMENU-

BJECTANCESTORSMENU-50

BJECTSPECIALIZATIONSMENU-51

BJECTEDITOROPERATIONS

Fig. 19. An object editor instance.

mouse pointing and efficient update when parts of an
overall domain structure are changed. The window also
records foci-items selected by the user as arguments to
a command.

Each editor may have at most one window among its
components. When an editor has subeditors, some or all
may share the same window, or utilize separate windows.
Fig. 19 shows that ObjectEditor and SlotEditor in-
stances both share the same instance of Object-
EditorWindow.

PropertyDisplay: The property display presents a view
of an editee in a window. Impulse-86 has a number of
different kinds of display, each implementing a distinctive
visual style-and a user can define new types of display.
A property may be active (i.e., have regions sensitive to
mouse selection).

A property display is also responsible for setting up a
correspondence between its editee and the window re-
gions in which the editee is displayed. Impulse-86 has
been designed so that property displays need not be in-
stantiated (although it is straightfoward to do so if the

1786 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING. VOL. 14. NO. 12. DECEMBER 1988

property display requires more context than just the cor-
respondence between its editee and displayed window re-
gion). Editor windows, on the other hand, must be in-
stantiated in any case-and are therefore used to maintain
the correspondences set up by property display classes.

There are six displays in the object editor example. The
first five are components of ObjectEditor; each display
one of the five properties associated with the object itself.
The sixth (ObjectSlotsDisplay) is a component of
SlotEditor; it iterates over all of the s1ots.j Each of these
displays prints a single datum in the ObjectEditor-
Window.

The graph editor has a single specialized property dis-
play. It displays the entire graph in the editor window.
(Graphical displays can also be combined with other types
of property displays in editor windows.)

There is a large number of PropertyDisplay templates.
For example, many property displays have a similar cup-
tion and value format. Each of these property displays has
a caption, typically sensitive to selection with the mouse
(active), followed by a region that contains a value (e.g.,
the property display for the DOCUMENTATION slot in
the object editor of Fig. 14). The Caption&Value-
PropertyDisplay class is the common generalization. Its
specializations provide alternative ways to display cap-
tions and values, such as displaying captions as bitmaps.

Menu: Impulse-86 provides a large number of built-in
menu styles, ranging from static menus to pop-up and
pushbutton menus.

Menus are used to display choices to be made (choice
menus) or operations to be invoked (command menus).
When a selection is made in a command menu, Impulse-
86 informs the editor with which the menu is associated.
The responsibility for executing the selected operation lies
with the editor (see below). Menus may be unique to a
particular editor or shared among a collection of editors.

Menus are implemented as specialized windows. They
typically have a restricted format for items (e.g., rows
and columns), and a single method for handling mouse
button events. In principle, they could be implemented as
windows with simple property displays. However, per-
formance considerations on current workstations and win-
dow systems often dictate a specialized implementation.
Hence, analogous to the Window object, the Menu ob-
ject is an interface to one or more menu packages asso-
ciated with the underlying window system of the target
machine for Impulse-86.

Impulse-86 provides support for different menu types.
These include: StaticMenu for menus that remain on the
screen [e.g., the menus associated with the ObjectEditor
(Fig. 14)]; DynamicMenu for menus that pop up in re-
sponse to some selections, and MultipleChoiceMenu for
menus that allow a set of choices to be made before fin-
ishing an interaction and causing some action to occur. In
addition, there is support for menus that contain sets of

‘Each property display is typically responsible for one editee. However,
a property display (indeed, any component) can be iterated over a list of
editees.

operations to be performed (CommandMenu), menus that
contain a set of arguments required to complete specifi-
cation of operations (CommandArgumentMenu), a va-
riety of different menu styles (e.g., PushButtonMenu for
control panel buttons, StatzDisplayMenu for large,
scrolling status menus).

The topmost menu in Fig. 14 is a command menu as-
sociated with the ObjectEditor. The second menu is a
command menu associated with the SlotEditor. The next
two menus (Ancestry and Progeny) are command menus
that show the immediate relatives of the editee object (and
new interaction contexts can be invoked by selecting ob-
jects in those menus).

The rule editor specialization of the object editor (Fig.
15) has two new command menus for Rule Commands
and Clause Commands. It uses a specialized form of the
standard slot editor command menu (SE Commands), and
inherits the Ancestry menu.

The separation between ObjectEditor and SlotEditor
is used to advantage for indicating which commands are
appropriate to a user-selected item in the editor window.
For example, when an object-specific property has been
selected, Impulse-86 grays over the menu of slot-related
commands. This helps to focus the attention of the user
on the relevant commands.

Operations: Methods that perform the operations de-
fined for an editor are grouped in operations objects. These
methods are invoked by a message from the editor.

ObjectEditorOperations knows how to execute the
operations listed in the ObjectEditorCommandMenu;
SlotEditorOperations knows how to execute the opera-
tions listed in the SlotEditorCommandMenu. For ex-
ample, when the SlotEditor receives a message that the
user selected Rename Slot, it relays that message to
SlotEditorOperations, which has a method that actually
renames the slot.

Separating operations from menus permits the same ed-
iting operations to be invoked in a variety of ways, in-
cluding menu selection, typein, function invocation, or
message from a remote processor.

In addition to the five major building blocks, there are
a few minor building blocks. For example, Impulse-86
provides high-level support for keyboard interaction
through TTYInteractionWindows.

C. Discussion
Impulse-86 has been used to construct a wide variety of

user interfaces. These range from simple “caption and
value” editors (e.g., the object and rule editors described
above), to graph editors (each with a specialized strategy
for handling information overload). They include two-di-
mensional iconic graphics editors (used in program de-
sign) and data graphics editors (used in scientific data
interpretation). See [49] for a complete discussion of Im-
pulse-86.

Specialized Impulse-86 interfaces typically require short
development times. We attribute this to the particular set
of behaviors encapsulated in Impulse-86 building blocks.

SCHOEN P! ul.: DESIGN OF KNOWLEDGE-BASED SYSTEMS 1787

The designer is insulated from the details of manipulating
bitmaps, windows, mouse interactions, typein streams,
and menus-I/O details which traditionally require pains-
taking attention. Attention can therefore be concentrated
on what the customized interface should look like, what
information it should show the user, and what commands
the user should be able to request.

Several features of the Impulse-86 substrate contribute
to this ability. The building blocks are quite general, cov-
ering a wide range of interaction styles. Implementation
as an object-oriented system makes it easy to specialize
and modify. A uniform, relatively fine-grain protocol is
used throughout, together with a number of known meth-
ods and defaults. These characteristics ease the problem
of understanding what is in the system and what mixins
to use as a starting point for customized interfaces. Fur-
thermore, no distinction is made between default methods
and default values; this simplifies declarative specializa-
tion of the kernel. Finally, Impulse-86 contains a number
of archetypal interfaces; modifying one of these is an ef-
fective strategy for creating a new interface.

Other groups are currently working on systems that
support construction of interactive interfaces. The GUI-
DON-WATCH system [43] demonstrates the utility of a
user interface tuned to the operation of a particular class
of consultation systems. The authors note that knowl-
edge-base editors orginally intended for use by knowl-
edge base developer/maintainer are typically inappro-
priate interfaces for the end user. Impulse-86 offers a
substrate that bridges the gap between the tools required
by a developer/maintainer, by a domain specialist, and by
an end user. Its extensibility further enables it to support
the construction of specialized interfaces for each type of
user.

The SIG system [35] is much closer to Impulse-86. Built
on top of Smalltalk- [24], it too offers an extensible
kernel that supports generation of interactive displays. In
the terminology of [35], SIG emphasizes the view aspect
of interaction; it addresses the control aspect in a less
structured manner. In contrast, we have found it useful in
Impulse-86 to provide a considerable amount of structure
to support the control aspect of interaction as well as the
view aspect. We have also found it useful to provide a
relatively fine-grained structure to support user extension.

Another related effort is EZWin [33], an object-ori-
ented editing system which provides three object classes
for constructing editors. Although the two systems have
similarities, there are several important differences.
“EZWin systems are basically editors for graphical ob-
jects.” [33, p. 1861 Systems constructed in Impulse-86
are interfaces for knowledge-based systems; the interac-
tion objects and routines are completely separate from the
knowledge-base being edited. This separation allows the
interface and application to be modified independently and
supports the reuse of interfaces with different knowledge-
based systems.

Perhaps closest to Impulse-86 is PSBase [151, a proto-
type system for modeling and constructing user inter-

faces. Like Impulse-86, PSBase separates the interface
from the application. It also considers the view aspect of
interaction (called presentation), and the control aspect
(called recognition). Ciccarelli describes the implemen-
tation of a number of well-known text-oriented and icon-
oriented interfaces in PSBase (e.g., the Xerox Star inter-
face [47]). Impulse-86 and PSBase share much in spirit,
but differ in specifics. Both systems explicitly consider
composite interfaces and sharing of structure. Because
Impulse-86 has been carried through to production use in
a wide variety of applications, it provides a larger number
of interaction styles.

Much of the recent work on graphical programming
systems is relevant to Impulse-86. These systems provide
iconic interfaces for creating, editing and animating pro-
grams. Program animation is triggered by application-
specific events which update the display. While the inter-
action with and appearance of these interfaces are similar
to interfaces built with Impulse-86, the underlying struc-
ture is quite different. First, most graphical programming
interfaces [121, [131, [34], [40]-[42] are tightly coupled
with their application: interaction and animation are man-
aged by low-level calls from the editor and the interpreter.
Impulse-86 separates the interface and application,
thereby supporting reuse and modification. Second, only
some of these systems [34], [40], [42] provide support for
relationships such as composition and dependency. These
relationships, and their explicit representation in objects,
allow important structural features of the application (such
as connectivity) to be maintained. The differences be-
tween Impulse-86 and these systems stem from the at-
tempted scope of the systems. All of these systems are
closely tied to the domain of programming-extension and
reuse of these interfaces is limited to this domain. Im-
pulse-86 aspires to provide interface support for a variety
of applications, not just programming.

V. RELATED WORK

The philosophy embodied in this work can be traced
back to the MYCIN project, described fully in [14]. The
concept of an intelligent assistant derives directly from
TEIRESIAS [21] system. Our conception of task models
follows from TEIRESIAS’s rule models. Its technique of
“acquisition in context” -eliciting information by asking
questions relevant to specific situations, rather than ask-
ing general questions-is embodied in the assistant’s use
of task-specific schemata to drive acquisition of domain
knowledge. TEIRESIAS was designed to assist with the
debugging nearly complete knowledge bases; it worked
by guiding a domain specialist through a faulty reasoning
trace, searching for missing and incorrect knowledge. By
contrast, the designer’s assistant addresses knowledge ac-
quisition techniques for all phases of KBS development.
The EMYCIN system [36] defined the concept of a KBS
shell; our vision of a knowledge intensive development
environment is a descendant of this approach.

Acquisition of task-specific inference and control
knowledge is addressed in a number of systems. MOLE

1788 1EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 12, DECEMBER 1988

[22] acquires heuristic classification knowledge in a two-
phase process. In the first phase, an initial knowledge base
is constructed; the domain specialist is asked to supply
common hypotheses and evidence, and then draw asso-
ciations between them. In the second phase, MOLE and
the specialist interact to refine the knowledge base. MOLE
performs static analysis of the knowledge base to discover
ambiguities and inadequacies in the knowledge base; it
can recommend corrections for some knowledge base de-
ficiencies discovered by this process. The system also
performs dynamic analysis; by examining its failures on
known test cases, it is able to suggest knowledge base
alterations to remedy its performance. MOLE is a self-
contained environment; it contains an inference compo-
nent as well, allowing it to both test its knowledge, and
run actual diagnostic sessions. The approach to knowl-
edge acquisition taken by the designer’s assistant differs
from that in MOLE. The assistant begins by acquiring the
conceptual structure of a domain, without regard for the
type of problem solving to be performed. It is our hy-
pothesis that the conceptual structure can serve as the ba-
sis for a number of systems. In addition, the assistant is
not a self-contained environment; it is a component of an
extensible problem solving framework; it must be able to
guide acquisition of knowledge for any number of repre-
sentation languages and inference procedures.

In ROGET [3], Bennett describes a prototype knowl-
edge-based system for acquiring the conceptual struc-
ture-descriptions of input evidence, inference steps, and
output advice-of diagnostic expert systems. ROGET in-
teracts with a domain specialist to acquire the structure of
the new system, comparing the task requirements to ab-
stract categories of requirements derived from previously
constructed diagnostic systems. The system makes rec-
ommendations concerning the scope of the system to be
constructed and the specific knowledge engineering tech-
niques to be employed. The principal similarity to the
work described in this article is the use of abstract task
models to focus knowledge acquisition; however, RO-
GET is targeted only towards the initial phase of KBS
construction. The result of a ROGET consultation is an
initial EMYCIN knowledge base; additional terminology,
domain-specific inference rules, and control structure must
all be acquired within EMYCIN.

The Knowledge-Based Software Assistant (KBSA) is a
proposed architecture to aid “. . . the development, evo-
lution, and maintenance of large software projects” [26].
Software development and maintenance under the KBSA
paradigm is fundamentally different from current prac-
tice; changes are made to the software specification, rather
than to the software itself. The implementation of the
software specification is rederived with each change. This
is similar to the assistant’s providing a concept and rela-
tion level interface for knowledge capture, deriving the
computational representation of the knowledge base it-
self. In addition, the KBSA captures design decisions re-
garding the software project, and can act as an intelligent

software assistant to developers, maintainers, project
managers, and end-users. This parallels our goals for the
KBS designer’s assistant quite closely. The KBSA and the
designer’s assistant differ, however, in a number of im-
portant aspects. Whereas the KBSA emphasizes capturing
the validating design decisions, the designer’s assistant
emphasizes helping the designer formulate the conceptual
structure of a KBS. The KBSA creates and maintains an
executable specijication of a software system, which it
assumes is simpler to debug and validate than the actual
implementation. The designer’s assistant, however, works
with the implementation itself; in KBS development, the
concept of a specification is informal, and often evolves
as the KBS evolves.

KL-ONE 11 l] is a knowledge representation framework
based on a semantic network model. It and its successors,
including Krypton [lo] NIKL [29], and KL-TWO [59],
have made important contributions towards a formal the-
ory of semantic network languages. Of particular rele-
vance to the KBS designer’s assistant is the notion of a
classijier, a procedure for determining the correct place
for a description in a KL-ONE network. Stated simply,
the classification algorithm places a new concept in the
network such that it is “above” (is an ancestor of) all
concepts it subsumes, and is “below” (is a descendant
of) all concepts that subsume it. One concept subsumes
a second concept if all instances of second would also be
recognized as instances of the first. KL-ONE, KL-TWO,
NIKL, and Krypton knowledge bases are constructed by
classification. The designer’s assistant defines neither
subsumption nor classification; however, by helping de-
signers produce knowledge bases which encode informa-
tion in the most general manner possible, it does offer a
similar service. The assistant’s library of modeling cliches
is a means by which it can detect poorly structured knowl-
edge bases; these cliches also allow the assistant to rec-
ommend a greater variety of improvements to knowledge
base structure. For example, the KL-ONE classifier can
only move concepts in a taxonomy; the assistant’s “clas-
sifier” can in addition recommend changes in the struc-
ture of concepts, so as to make explicit generalizations
not properly encoded in the knowledge base.

We expect classification to play a larger role as we ex-
periment with larger knowledge bases. As the size of a
knowledge base increases, it becomes increasingly diffi-
cult to find the appropriate concepts to be specialized and
elaborated. (This is analogous to the well-known prob-
lems of finding and understanding in discussions of the
software reuse [4] .)

VI. CONCLUSION

Starting from the widespread belief that knowledge ac-
quisition is the central problem in knowledge-based sys-
tem design, we have argued that a broad spectrum of
tools-ranging from powerful representation languages to
sophisticated editors and debuggers-is required to man-
age this complex process. While contemporary KBS de-

SCHOEN ef (11.: DESIGN OF KNOWLEDGE-BASED SYSTEMS 1789

sign environments provide many such tools, little or no
support in the use of these tools is currently available for
domain specialists and designers.

Our central thesis is that it is possible to construct an
automated assistant which actively participates in the
knowledge acquisition process. This assistant guides de-
signers and domain specialists in the proper selection and
use of development environment tools, and helps formu-
late, extend, visualize, and verify the conceptual structure
of domain knowledge bases. The assistant is a knowl-
edge-based system whose domain is the design of knowl-
edge-based systems. Its domain knowledge includes
models of various classes of knowledge-based systems
(such as diagnostic, design, and simulation systems), as
well as models of proper usage of both its representation
language and development environment tools. The assis-
tant is not limited to helping construct the conceptual
structure of a knowledge-based system; it can also offer
support throughout the lifetime of the system, in areas
such as testing, validation, and knowledge base mainte-
nance. We have partially implemented such an assistant.

Collective experience with tools for KBS development
has shown us that a good development environment is
critical in helping knowledge engineers produce work-
able, extensible, and maintainable systems. As with any
complex system, poor design choices made during the be-
ginning phase of knowledge base construction may prop-
agate far into an evolving system, often necessitating sub-
stantial redesign after the system has grown quite large.
The knowledge base designer’s assistant can assist in early
detection and correction of design errors, thus simplifying
later debugging and extension of the knowledge base.

The designer’s assistant is part of a larger vision: a
knowledge-intensive development environment, which
supports development and use of knowledge-based sys-
tems from the separate perspectives of developers, do-
main specialists, and end-users. The environment is com-
posed of two interrelated components: a representation
and reasoning substrate, which integrates various cate-
gories of problem solving tools, and an interaction sub-
strate, which consists of tools for constructing interactive
user interfaces to knowledge-based systems. This orga-
nization reflects our view that reasoning and interaction
are both knowledge-based tasks; the environment pro-
vides the “traditional” representation and reasoning sup-
port found in all KBS shells, as well as support for pow-
erful user interfaces-such as the designer’s assistant-
which themselves can be knowledge-based systems.

Our emerging knowledge-intensive development envi-
ronment is founded upon two key technologies: Strobe,
an object-oriented programming language, and Impulse-
86, a user interface framework. Strobe is useful in two
ways: as a programming paradigm, it is the “glue” which
joins together distinct software subsystems in a uniform
manner; as a simple representation language kernel, it
supports the construction of computational models which
mirror the organization of the physical world in which the

software systems are to operate. Impulse-86 is a key com-
ponent of the interaction substrate; it implements the low-
level mechanics of user-interfaces-support for windows,
menus, typein, and pointing devices-as well as provid-
ing editors and browsers for domain knowledge bases. It
further serves as an extensible kernel from which appli-
cation-specific user interfaces can be constructed.

Strobe and Impulse-86 already contribute much to con-
trol the complexity of KBS design. These components,
while passive, are the prerequisites for the more autono-
mous designer’s assistant.

ACKNOWLEDGMENT

P. Patel-Schneider, H. Brown, G. Lafue, and M. Te-
nenbaum provided significant comments on the content
and organization of this article; our thanks to them and to
the reviewers. We also wish to thank our colleagues at
Schlumberger-Doll Research and Schlumberger Palo Alto
Research for their suggestions and contributions to the
Strobe and Impulse systems.

REFERENCES

[I] J. S. Aikins, “Prototypes and production rules: A knowledge repre-
sentation for computer consultations, ” Ph.D. dissertation, Stanford
Univ., Tech. Rep. STAN-CS-80-814. 1980.

[2] -, “Prototypical knowledge for expert systems,” Art$cial Infel/. ,
vol. 20, pp. 163-210, 1983.

[3] J. S. Bennett. “ROGET: A knowledge-based consultant for acquiring
the conceptual structure of a diagnostic expert system,” J. Autonrafed
Reasoning, vol. 1, pp. 49-74, 1985.

[4] T. Biggerstaff and C. Richter, “Reusability framework, assessment,
and directions,” IEEESofrware, vol. 4, no. 2, pp. 41-49, 1987.

[5] G. M. Birtwistle, 0. Dahl. B. Myhrhaug, and K. Nygaard, SIMCiLA
BEGIN. New York: PetrocelliiCharter, 1973.

[6] D. G. Bobrow and M. J. Stefik, The LOOPS Manual, Xerox Palo
Alto Research Center, Tech. Rep., Dec. 1983.

[7] D. G. Bobrow and T. Winograd, “An overview of KRL, a knowledge
representation language,” Cognitive Sci., vol. 1, no. 1, pp. 3-46,
Jan. 1977.

[8] R. J. Brachman, “ ‘I lied about the trees’ or, defaults and definitions
in knowledge representation,” AI Mug., vol. 6, no. 3, pp. 80-93,
Fall 1985.

[9] -, “What IS-A is and isn’t: An analysis of taxonomic links in se-
mantic networks,” Cornpurer, vol. 16, no. 10, pp. 30-36, Oct. 1983.

[lo] R. J. Brachman, V. P. Gilbert, and H. Levesque. “An essential hy-
brid reasoning system: Knowledge and symbol level accounts of
KRYPTON,” in Proc. Ninth Int. Joint Conf Artificiul Intelligence,
Aug. 1985, pp. 532-539.

[ll] R. J. Brachman and J. G. Schmolze. “An overview of the KL-ONE
knowledge representation system,” Fairchild Lab. Artificial Intell.
Res.. Tech. Rep. 30. 1984.

[12] G. P. Brown, R. T. Carling, C. F. Herot, D. A. Kramlich, and P.
Souza. “Program visualization: Graphical support for software de-
velopment,” Cornpurer, vol. 18, no. 8, pp. 27-35, Aug. 1985.

1131 M. H. Brown and R. Sedgewick, “A system for algorithm anima-
tion,” Compur. Graphics, vol. 18, no. 3, pp. 177-186, July 1984.

[14] B. G. Buchanan and E. H. Shortliffe, Eds., Rule-Bused Expert Sys-
terns: The MYCIN Experiments of the Stanford Heuristic Program-
ming Project. Reading, MA: Addison-Wesley, 1984.

[15] E. C. Ciccarelli, IV, “Presentation Based User Interfaces,” Ph.D.
thesis, MIT, Tech. Rep. AI-TR-794, Aug. 1984.

[16] W. J. Clancey, “The advantages of abstract control knowledge in
expert system design,” in Proc. Third Nat. Con& Artijkial Intelli-
gence, Aug. 1983, pp. 74-98.

[I71 W. J. Clancey. “The epistemology of a rule-based expert system: A
framework for explanation,” Arfi’cia[Ir~rell., vol. 20, pp. 2 15-25 I ,
1983.

1790 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14. NO. 12, DECEMBER 1988

1181

[I91

WI

I211

[2-a

~231

~241

WI

WI

~271

WI

~291

1301

[311

r321

[331

[341

[351

[361

[371

[381

[391

1401

(411

~421

[431

[441

I451

I461

I471

B. Cohen and G. L. Murphy, “Models of concepts,” Cognitive SC;. , interface: An overview,” in Proc. Nat. Comput. Conf., AFIPS Press.
vol. 8, pp. 27-58, 1984. 1982, pp. 515-528.
B. J. Cox, Objecr Oriented Programming: An Evolutionary Ap-
proach. Reading, MA: Addison-Wesley, 1986.
0. Dahl and K. Nygaard, “SIMULA-An ALGOL-based simulation
language,” Commun. ACM, vol. 9, no. 9, pp. 671-677, Sept. 1966.
R. Davis and D. B. Lenat, Knowledge-Based Systems in Artihcial
Intelligence. New York: McGraw-Hill, 1982.
L. Eshelman and J. McDermott, “MOLE: A knowledge acquisition
tool that uses its head,” in Proc. Fifth Nat. Conf Artificial Intelli-
gence, 1986, pp. 950-950.
R. Fikes and T. Kehler, “The role of frame-based representation in
reasoning,” Commun. ACM, vol. 28, no. 9, pp. 904-920, Sept. 1985.
A. Goldberg, SMALLTALK-80: The Interactive Programming Envi-
ronment. Reading, MA: Addison-Wesley, 1984.
A. Goldberg and D. Robson, SMALLTALK-80: The Language and its
Implementation. Reading, MA: Addison-Wesley, 1983.
C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich, “Re-
port on a knowledge-based software assistant,” in C. Rich and R. C.
Waters, editors, Artificial Intelligence and Software Engineering, C.
Rich. and R. C. Waters, Eds. Los Altos, CA: Morgan Kaufmann.
1986, ch. 23, pp. 377-428.
F. Hayes-Roth, D. A. Waterman, and D. B. Lenat, Eds., Building
Expert Systems. Reading, MA: Addison-Wesley, 1983.
Interlisp-D Reference Manual, Xerox Artificial Intell. Syst., Pasa-
dena, CA, Oct. 1985.

[481

I491

[501

I511

R. G. Smith, “Programming with rules in Strobe,” Schlumberger-
Doll Res., Tech. Rep. SYS-84-12, Dec. 1984.
R. G. Smith, P. S. Barth, and R. L. Young, “A substrate for object-
oriented interface design,” in Research Directions in Object-Ori-
ented Programming, B. Shriver and P. Wegner, Eds. Cambridge,
MA: MIT Press, 1987, pp. 253-315.
R. G. Smith and P. J. Carando, “Structured object programming in
Strobe,” Schlumberger-Doll Res., Res. Note, Dec. 1986.
R G. Smith. R. Dinitz, and P. Barth, “Impulse-86: A substrate for
object-oriented interface design,” in Proc. First ACM Conf Object
Oriented Systems, Languttges, and Applications, Sept. 1986, pp. 167-
176.

~521

[531

[541

1551

1561
T. S. Kaczmarek, R. Bates, and G. Robins, “Recent developments
in NIKL,” in Proc. Fifth Nat. Conf Artificial Intelligence, 1986, pp.
978.
KEE Software Development Systems User’s Manual, 3rd ed.,
IntelliCorp, 1986.
J. C. Kunz, R. J. Fallat, D. McClung, J. J. Osbom, B. A. Votteri,
H. P. Nii, J. S. Aikins, L. M. Fagan, and E. A. Feigenbaum, “A
physiological rule-based system for interpreting pulmonary function
test results,” in Proc. Computers in Critical Care and Pulmonary
Medicine, 1979, pp. 3755379.
G. M. E. Lafue and R. G. Smith, “A modular tool kit for knowledge
management,” in Proc. Ninth Int. Joint Conf. Artificial Intelligence,
Aug. 1985, pp. 46-52.
H. Lieberman, “There’s more to menu systems than meets the
screen,” Comput. Graphics, vol. 19, no. 3, pp. 181-189, July 1985.
R. L. London and R. A. Duisberg, “Animating programs using
Smalltalk,” Computer, vol. 18, no. 8, pp. 61-71, Aug. 1985.
D. Maier, P. Nordquist, and M. Grossman, “Displaying database
objects,” in Proc. First Int. Conf Expert Database Systems, Apr.
1986, pp. 15-30.
W. V. Melle, A. C. Scott, J. S. Bennett, and M. Peairs, “The EMY-
CIN manual,” Dep. Comput. Sci., Stanford Univ., Tech. Rep.
STAN-CS-81-885 (HPP-81-16). Oct. 1981.
M. Minsky, “A framework for’representing knowledge,” in The Psy-
chology Of Computer Vision, P. H. Winston, Ed. New York:
McGraw-Hill, 1975.

[571

R. G. Smith, G. M. E. Lafue, E. Schoen, and S. C. Vestal, “De-
clarative task description as a user interface structuring mechanism,”
Computer, vol. 17, no. 9, pp. 29-38, Sept. 1984.
R. M. Stallman, “EMACS: The extensible, customizable, self-doc-
umenting display editor,” in Interactive Programming Environments,
D. R. Barstow, H. E. Shrobe, and E. Sandewall, Eds. New York:
McGraw-Hill, 1984, pp. 300-325.
M. J. Stefik and D. G. Bobrow, “Object-oriented programming:
Themes and variations,” AI Mug., vol. 6, no. 4, pp. 40-62, 1986.
B. Stroustrup, The Cf + Programming Language. Reading, MA:
Addison-Wesley, 1986.
M. Suwa, A. C. Scott, and E. H. Shortliffe, “Completeness and con-
sistency in a rule-based system,” in Rule-Bused Expert Systems, B.
G. Buchanan and E. H. Shortliffe, Eds. Reading, MA: Addison-
Wesley, 1984, ch. 8, pp. 159-170.
W. R. Swattout, “XPLAIN: A system for creating and explaining
expert consulting programs,” Artificial Intell., vol. 21, pp. 285-325.
1983.

l581
1591

[601

[611

S. M. Sze, Ed., VLSI Technology. New York: McGraw-Hill, 1983.
M. Vilain, “The restricted language architecture of a hybrid repre-
sentation system,” in Proc. Ninth Int. Joint Conf. Artificial Intelli-
gence, Aug. 1985.
R. C. Waters, “KBEmacs: A step towards the programmer’s appren-
tice,” MIT Al Lab, Tech. Rep. 753, 1985.
D. Weinreb et al., Lisp Machine Manual, Symbolics, Inc., 1984.

Eric Schoen received the B.S. and M.S. degrees
in electrical engineering from Stanford Univer-
sity, Stanford, CA, in 1981 and 1982, respec-
tively.

He is an Associate Member of the Technical
Staff at Schlumberger Palo Alto Research, Palo
Alto, CA. From 1982 to 1984, he was an Asso-
ciate Member of the Professional Staff at Schlum-
berger-Doll Research, Ridgefield, CT. He is cm-

4 rently a doctoral candidate in computer science at
Stanford. His research interests include knowl-

edge-based systems, object-oriented programming, and user interfaces.

T. M. Mitchell, S. Mahadevan, and L. Steinberg, “LEAP: A learn-
ing apprentice for VLSI design,” in Proc. Ninth Int. Conf. Artificial
Intelligence, 1985, pp. 573-580.
D. A. Moon, “Object-oriented programming with Flavors,” in Proc.
First ACM Conf Object Oriented Systems, Languages, and Appli-
cation, Sept. 1986, pp. l-8.
M. Moriconi and D. F. Hare, “Visualizing program designs through
PegaSys,” Computer, vol. 18, no. 8, pp. 72-85, Aug. 1985.
S. P. Reiss, “Graphical program development with PECAN program
development system,” Sigplan Notices, vol. 19, no. 5, pp. 30-41,
May 1984.
-, “An object-oriented framework for graphical programming,”
ACM SIGPLAN Notices, vol. 21, no. 10, pp. 49-57, Oct. 1986.
M. H. Richer and W. J. Clancey, “GUIDON-WATCH: A graphic
interface for viewing a knowledge-based system,” IEEE Comput.
Graphics Applications, vol. 5, no. 11, pp. 51-64, 1985.
R. B. Roberts and I. P. Goldstein, “The FRL manual,” MIT, AI
Memo 409, Sept. 1977.
E. Schoen and R. G. Smith, “Impulse: A display-oriented editor for
Strobe,” in Proc. Nat. Con& Artificial fntelligence, Aug. 1983, pp.
356-358.
B. A. Sheil, “Power tools for programmers,” Datamarion. pp. 13l-
144, Feb. 1983.
D. C. Smith, E. Harslem, C. Irby. and R. Kimball, “The Star user

Reid G . Smith (S’67-M’69) received the B.Eng.
and M.Eng. degrees in electrical engineering from
Carleton University, Ottawa, Ont., Canada, in
1968 and 1969, respectively, and the Ph.D. de-
gree in electrical engineering from Stanford Uni-
versity, Stanford, CA, in 1979.

He is the Director of Schlumberner Palo Alto
Research, Palo Alto, CA. His currem research fo-
cuses on object-oriented programming environ-
ments, knowledge-based system design, and AI
applications in engineering. He has previouslv

worked on knowledge-based systems for oilfield data interpretaiion, tools
for knowledge-based system construction, and learning apprentice sys-
tems. He is the author of A Framework For Distributed Problem Solving
(UMI Research Press, 1981).

Dr. Smith is a member of ACM, AAAI, CSCSI, and AAAS, and serves
^_ .L^ ^rl:&,..ze, Lx-_> ^C r- . CL ~.~ n~-~- ~I 3 1 I. _.

SCHOEN F, (11.: DESIGN OF KNOWLEDGEBASED SYSTEMS 1791

Bruce G. Buchanan received the Ph.D. degree He is currently working on the interpretation of data about the three-di-
from Michigan State University, East Lansing, mensional structure of proteins. His other research interests include: rep-
where he was later on the faculty. resenting knowledge, reasoning about complex and uncertain situations.

He is a Professor of Computer Science and explaining lines of reasoning, and acquiring new knowledge.
Medicine (by courtesy) at Stanford University, Prof. Buchanan is on the editorial boards of Arrijcial fnrellipvce, Mu-
Stanford, CA. In 1966, he joined Stanford Uni- chine Lemming, and The Journal of Automured Reasoning, and is Secre-
versity as a Research Associate in Computer Sci- tary-Treasurer of the American Association for Artificial Intelligence.
ence. From 1971 to 1976, he was a Research
Computer Scientist, while holding a National In-
stitutes of Health Career Development Award. In
1976, he was appointed to his present position.

