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Abstruc&Intelligent assistants facilitate design and construction of 
complex software. In this article, we propose a model for an intelligent 
assistant to aid in building one kind of software-knowledge-based sys- 
tems-and discuss a preliminary implementation. The assistant partic- 
ipates in knowledge-based system (KBS) construction, including ac- 
quisition of an initial model of a problem domain, acquisition of control 
and task-specific inference knowledge, testing and validation, and long- 
term maintenance of encoded knowledge. We present a hypothetical 
scenario in which the assistant and a KBS designer cooperate to create 
an initial domain model, and discuss five categories of knowledge the 
assistant requires to offer such help. We then discuss two software 
technologies upon which the assistant is based-an object-oriented pro- 
gramming language, and a user-interface framework. 

Index Terms-Knowledge acquisition, knowledge-based systems, 
object-oriented programming, program editing, programming envi- 
ronments, user interfaces. 

I. INTRODUCTION 

I NTELLIGENT assistants facilitate design and con- 
struction of complex software. In this article, we pro- 

pose a model for an intelligent assistant to aid in building 
one kind of software-knowledge-based systems-and 
discuss a preliminary implementation. 

The development of knowledge-based systems (KBS’s) 
is a complex process. Often applied to poorly understood 
domains-for which standard programmatic solutions do 
not exist-successful KBS development at present re- 
quires collaboration between domain specialists and 
knowledge engineers. The process is one of iterative re- 
finement: the specialist describes domain knowledge to 
the engineer, who in turn encodes that knowledge using 
tools provided by a KBS “shell,” and then elicits further 
knowledge from the specialist. The approach is far from 
ideal; difficulties can arise in any of the many steps in- 
volved in the transfer of knowledge from specialist to sys- 
tem (e.g., in elaborating the domain knowledge, in en- 
coding the domain knowledge, or in verbal 
communication). 

We view the central problem in KBS design to be 
knowledge acquisition-moving domain knowledge into 
a software system by whatever means. This is not simply 
a problem encountered in the initial stages of design. 
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Rather, it extends over the complete lifetime of a system. 
Continuing expansion and modification of the system’s 
knowledge base is driven by two factors: changing do- 
main knowledge, and broadened scope of applicability. 
Designers of existing KBS development environments 
recognize this problem, and provide a wide variety of tools 
to reduce its difficulty. Some of these tools-such as syn- 
tax checkers-derive from conventional software engi- 
neering; others-such as multiple knowledge representa- 
tion paradigms, explanation facilities, and rule 
debuggers-have evolved within the KBS community spe- 
cifically to address the iterative and uncertain nature of 
knowledge acquisition. 

While contemporary KBS development environments 
contain many tools to help manage the complexity of 
knowledge acquisition, they offer little or no guidance on 
how to use these tools. As a result, knowledge engineers 
are often faced with a bewildering set of choices: how to 
represent domain terminology and relations, how to de- 
termine completeness of encoded domain knowledge, how 
to enter additional domain knowledge without introducing 
inconsistencies, and so on. 

The central theme of this article is a new approach to 
knowledge acquisition, in which an intelligent assistant 
joins the domain specialist and knowledge engineer. This 
third participant aids the engineer in using the tools of the 
KBS development environment to encode knowledge of 
the domain. Its support takes a number of forms: recog- 
nition of both incomplete knowledge and opportunities for 
further specialization and elaboration of domain knowl- 
edge, consistency and “style” maintenance, automatic 
“classification” of domain terms [ 111, debugging aids, 
explanation concerning the evolution, current status, and 
dependencies of the knowledge base, and validation of 
encoded knowledge. 

We have come to view the interaction between the 
knowledge engineer and the engineer’s interface as a dis- 
course, albeit one carried out in the “language” of the 
designer’s tool. All too often, system builders are forced 
to communicate with design aids at a syntactic level, 
within a vocabulary that is difficult to learn and use. By 
contrast, communication with a human assistant is at a 
high level, in which a designer can assume the assistant 
knows something about the design task and the system (or 
device) being designed, as well as about the design tools. 
For effective communication, each participant must be 
aware of the preconceptions, intentions, and specialized 
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vocabulary of the other. Further, much is often left un- 
stated during discourse, to be inferred by the participants. 
In light of this, we propose elevating the status of design 
tools to that of intelligent assistants, which share this 
“high-level communication” property with human assis- 
tants. 

A. The Need for Intelligent Assistance 
Developers of early rule-based expert systems, such as 

MYCIN [ 141 and EMYCIN [36], were simultaneously at- 
tempting to understand conventions for building rule sets 
and editing knowledge bases (KB’s) of rules. Work by 
Davis [21] and Suwa L-561, and later Bennett [3], focused 
on representing such conventions so that intelligent assis- 
tance could be offered at the time of KB design or KB 
debugging. In particular, the programs resulting from this 
research encoded knowledge of the syntax of rules and 
some knowledge of the semantics of the domain, in order 
to guide acquisition and maintenance of rule sets. 

Knowledge in EMYCIN-based systems was repre- 
sented primarily in production rules. While constrained in 
format, and intended to represent independent “packets” 
of knowledge, these rules also proved surprisingly flexi- 
ble. However, they frequently contained unforeseen in- 
teractions. Thus, it was incumbent upon the knowledge 
acquisition tools to prevent anomalous rules from becom- 
ing part of the rule base. To this end, the EMYCIN in- 
terface provided a number of services: syntactic analysis 
could discover (and often correct) typographical errors; 
semantic analysis could reveal subsumption or contradic- 
tion relationships between new and existing rules; statis- 
tics on rule application helped detect overly general or 
overly specific rule premises. 

While EMYCIN was successful in these specific areas, 
no attempt was made to include in it more general “guide- 
lines of good practice. ” Yet, such guidelines-concem- 
ing efficiency, clarity, and elegance in rule-based system 
design-were learned and communicated informally 
among persons using EMYCIN and similar systems. 

Unfortunately, the ramifications of some of these 
guidelines were not totally understood at the time. For 
example, knowledge engineers were encouraged to add 
so-called “screening clauses” to rule premises; these 
clauses defined a narrow context within which the re- 
maining premise clauses made sense. The primary reason 
for including such clauses in a rule was to prevent the 
consultation system from asking for specific information 
prior to establishing the general context for the question. 
In Fig. 1, for example, the second clause is too specific, 
unless the first clause establishes that the context is ap- 
propriate. The first clause keeps the second clause from 
being checked when it is not likely to be true. 

In retrospect, the use of screening clauses complicated 
the tasks of maintaining [2] and explaining [17] the rule 
base. Having no explicit concept of screening clauses, the 
EMYCIN knowledge acquisition interface could neither 
detect when one was necessary in a newly entered rule, 
nor could it identify the screening clauses in the existing 

IF: 1) There is evidence for pseudomonas, and 

THEN: 
2) There are pseudomonas-type skin lesions 

Fig. I. Sample premise of a MYCIN rule with screening clause. 

rule base. EMYCIN was quite successful at syntactic ma- 
nipulation of rule bases, but much less successful at se- 
mantic manipulation. 

The EMYCIN experience provided a number of valu- 
able lessons concerning the design of knowledge-based 
systems; principal of these is the need to represent infor- 
mation explicitly and declaratively. Since then, we have 
seen the power of this lesson applied in a number of dif- 
ferent ways: Aikins’ CENTAUR system [2] is a reimple- 
mentation of the rule-based PUFF system [31] in a mixed 
rule-and-object paradigm, replacing context-setting 
clauses by an explicit taxonomy of disease prototypes to 
which rules are attached; Clancey’s NEOMYCIN system 
[16] builds on Davis’ meta-rules [21] to explicitly repre- 
sent diagnostic strategy, producing a system which can 
explain and tutor medical diagnosis at a much more de- 
tailed level than could MYCIN. When this information is 
made explicit in the knowledge base, the designer’s as- 
sistant can use it (e.g., for explanation [57] and for 
knowledge base debugging [21]). Because much infor- 
mation was left implicit in MYCIN, a substantial amount 
of work was required when meningitis rules were added 
to the existing bacteremia rule base [l]. 

We believe it is now possible to construct a more pow- 
erful knowledge base designer’s assistant. This assistant 
will act as an interface between a KBS designer (e.g., a 
knowledge engineer) and a KBS development environ- 
ment; it will not only provide the sort of passive support 
provided by EMYCIN, but will also actively support en- 
coding of domain knowledge. 

B. Knowledge-Intensive Development Environments 
Key progress in two areas-representational frame- 

works and computing technology-has enabled us to con- 
ceive of tools like the knowledge base designer’s assis- 
tant. Object-oriented programming permits us to model 
underlying domain principles with greater clarity and ef- 
ficiency than was possible in purely rule-based formal- 
isms. Recent advances in computing technology (e.g., 
powerful personal workstations) permit us the “luxury” 
of combining interaction and inference while retaining a 
reactive environment, so that usable interfaces can also 
perform significant amounts of deduction. 

The designer’s assistant forms part of a larger vision- 
which we call a knowledge-intensive development envi- 
ronment. This environment has two essential, interrelated 
components; a representation and reasoning substrate, 
and an interaction substrate. Extending the key principle 
of knowledge-based systems-separation of domain 
knowledge and problem solving methods-this approach 
further separates problem-solving methods and interac- 
tion. 

The representation and reasoning substrate integrates 
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distinct problem-solving subsystems involving objects, 
rules, constraints, contexts, and explanation. This sub- 
strate has knowledge of the use of the individual subsys- 
tems, problem-solving methods, and basic knowledge of 
the domains in which it is applied. Our current substrate 
is based upon Strobe, an object-oriented language [50]. It 
has been augmented by a rule interpreter [48], a constraint 
manager, and a task configuration manager [32], [52]. 

The interaction substrate provides a set of tools for con- 
structing interactive user interfaces to knowledge-based 
systems. It must support at least three different perspec- 
tives, corresponding to three different types of user: 1) the 
developer/maintainer; 2) the domain specialist; and 3) the 
end user. (Each of these, in turn, may require different 
perspectives as well.) The substrate must provide a reac- 
tive environment for developer/maintainers. It must allow 
domain specialists to focus on the encoded domain knowl- 
edge, hiding the underlying representational mechanisms, 
and provide direct expression and interaction in terms nat- 
ural to the domain. Finally, the substrate must permit the 
construction of transparent and “easy-to-use” interfaces 
for end users. These three interfaces may appear as sep- 
arate tools, but in fact, they all share a common, under- 
lying software architecture. Our recent work on Impulse- 
86 [49], [51] indicates that it is possible to construct an 
interaction substrate that provides this architecture, and 
supports the needs of all three user groups. 

The representation and reasoning substrate already con- 
tains tools well-suited to user interface design. The ob- 
ject-oriented paradigm used in domain knowledge base 
construction is equally viable for encoding and organizing 
interface constructs like editors, windows, menus, and 
views. Knowledge base construction and maintenance is 
itself a knowledge-based task, and thus, the interaction 
substrate must be a knowledge-based system. Reasoning 
mechanisms from the representation and reasoning sub- 
strate can be brought to bear on the management of user 
interaction. For example, constraint systems which sup- 
port problem solving can be used to help maintain consis- 
tency during user interaction. Rules can be used to infer 
missing or dependent information. The same browsing 
techniques used by the developer to explore the system 
code can support graphical explanation-for developers, 
domain specialists, and end users alike. Analogies to dis- 
course can be drawn in the knowledge-intensive devel- 
opment environment. The interaction substrate must rea- 
son about the background, sophistication, and intentions 
of its user, as well as the available domain knowledge, to 
offer meaningful assistance. It also must often infer in- 
formation left implicit by the user. 

The complete knowledge-intensive development envi- 
ronment we describe is as yet a research goal; however, 
many of the individual components of the substrates do 
exist and are in daily use. Our first step towards integrat- 
ing the components into the complete development envi- 
ronment is the knowledge base designer’s assistant, a 
component of the interaction substrate. In Section II, we 
describe our current efforts aimed at constructing this tool. 

In the following sections, we describe the software tech- 
nologies upon which it relies: in Section III, we discuss 
the role of object-oriented programming; in Section IV, 
we describe interaction substrates, using Impulse-86 as an 
example. We present samples of the sorts of interfaces it 
can construct and discuss its utility for knowledge-based 
system design. We discuss related work in Section V, and 
summarize our approach to knowledge acquisition in Sec- 
tion VI. 

II. EXAMPLE 

In this section, we discuss the role of an active agent- 
the knowledge-based designer’s assistant-in the design 
process. When completed, it will offer the designer a wide 
spectrum of assistance, ranging from instruction in use of 
available tools to selection of representation, reasoning, 
and interaction paradigms. The assistant will appear as an 
expert-albeit computerized-user of the KBS develop- 
ment environment. In this section, we describe the var- 
ious services that will be provided by the assistant. 

The interface between the designer and the assistant is 
Impulse-86. The assistant monitors knowledge base ed- 
iting commands issued by the designer, and interacts by 
displaying suggestions in a set of windows. The assistant 
is aware of all changes made to an evolving knowledge 
base. (As with the original conception of the “Program- 
mer’s Assistant” in Interlisp [28], the assistant can be 
viewed as looking over the designer’s shoulder.) 

Throughout this section, examples are drawn from a 
hypothetical session in which the designer and assistant 
collaborate on the design of the kernel of a semiconductor 
fabrication knowledge base. (Information regarding VLSI 
technology is taken from [58].) The dialog between the 
designer and assistant is in reality graphical in nature, 
driven by interaction with customized interfaces; for clar- 
ity, we present the scenario as a transcript, in stylized 
natural language, of that interaction. In Section IV, we 
show some of the Impulse-86 editors which underlie the 
scenario. 

Our convention is as follows: text in italics is commen- 
tary on the transcript; text in bold font is either input from 
the designer, or represents concepts related to the knowl- 
edge base under construction; text in roman font is output 
from the assistant. The assistant uses bold font when re- 
ferring to concepts in the designer’s knowledge base. 

A. Assistance in Building a Domain Model 
In this example, we consider only the early phase of 

KBS construction. The major goal of knowledge acqui- 
sition at this point is to build a model of the domain, in 
terms of a vocabulary of domain-specific terms and rela- 
tions. (This is a model-bused approach to knowledge ac- 
quisition: we construct this model prior to considering 
specific problem cases and the knowledge needed to solve 
such cases. In the alternative case-based approach, spe- 
cific problem cases are used to identify the necessary do- 
main terms and relations.) Terms and relations from this 
model are used in task-specific inference and control 
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knowledge, as well as in explanations and conclusions 
produced by the system. For purposes of illustration, we 
assume this information is represented as objects in an 
object-oriented language (see Section III). 

During this phase, the assistant will guide acquisition 
of terms and relations so as to produce a model which 
encodes domain information in as clear, consistent, and 
complete a manner as possible. By this, we intend the 
knowledge base to contain little redundant information, 
so that information pertaining to any group of objects is 
associated with the maximally general object in the group. 
Further, the knowledge base should contain no contradic- 
tory information. Finally, the knowledge base should 
contain all terms and relations which are used by infer- 
ence and control rules, as well as system-generated ex- 
planations. 

Clearly, this represents an ideal, and probably unreal- 
izable, goal. We expect inconsistencies and incomplete 
information to become apparent as the domain model is 
applied to actual problems. A designer cannot guarantee 
that the domain model is complete before beginning to 
add inference and control knowledge to the system (since 
unforeseen terms and relations may be necessitated by 
adding such knowledge). Instead, we expect the assistant 
to employ heuristics that judge when enough vocabulary 
has been acquired to begin the next phase of knowledge 
acquisition. Acquisition and correction of the domain 
model will not cease with the end of the early phase of 
KBS construction; rather, it will likely continue in a fash- 
ion interleaved with acquisition of inference knowledge. 
The assistant will be able to detect when the addition of 
an inference or control rule necessitates extending or cor- 
recting the domain model, and temporarily switch back to 
the model acquisition “mode.” 

Our example shows the assistant helping the designer 
during model acquisition by suggesting terms and rela- 
tions to be specialized and/or elaborated. (The former in- 
volves defining new, more specific, subclasses of objects 
in the knowledge base; the latter, adding slots to existing 
objects.) It will do this by analyzing the evolving domain 
model to produce a set of goals, and then analyzing those 
goals to produce a set of knowledge base modifications to 
be made to achieve those goals. The modifications can 
then be communicated to the designer in a number of 
ways: as a description of the changes to be made to the 
information encoded in the knowledge base (i.e., changes 
to the meaning of the knowledge), as a description of the 
changes to be made to structures in the knowledge base 
(i.e., changes to the implementation of the knowledge), 
or as a set of editing commands to be performed to change 
those structures. These alternatives represent explana- 
tions of deficiencies in the model, at increasingly lower 
levels of abstraction; the assistant may choose the expla- 
nation which is most appropriate, given knowledge of the 
designer’s experience. 

The assistant needs to employ at least five categories of 
knowledge to be able to offer meaningful advice: 

Type 1: Knowledge of “generic tasks,” (e.g., knowl- 
edge of broad categories of application areas), 

Type 2: Knowledge of knowledge base design (e.g., 
procedures for acquiring and elaborating knowledge, and 
commonly-used knowledge base structuring techniques 
[cliches]), 

Type 3: Knowledge of the semantics of the language 
used to encode the domain model (e.g., general knowl- 
edge about relations, and knowledge about mapping be- 
tween meanings and representation of meanings in the 
language), 

Type 4: Knowledge of the editing tools available to the 
designer (e.g., available editing commands and their ef- 
fects), and 

Type 5: Knowledge of discourse (e.g., knowledge of 
how to infer the goals, plans, and intentions of the user). 

B. Hypothetical Design Session 
We present an excerpt from the beginning of the hy- 

pothetical design session, in which the designer and as- 
sistant begin to encode the domain model. For each in- 
ference made by the assistant, we indicate which of the 
above types of knowledge has been used. 

Assistant: What sort of task will this KBS be perform- 
ing? I currently know about the general characteristics of 
diagnosis, manufacturing, and design tasks. 

Designer: Manufacturing. 

The assistant now examines its generic model of 
manufacturing, and>nds that manufacturing can be 
viewed as a sequence of steps which consume raw 
materials to produce a finished part (Type 1 knowl- 
edge). The assistant now creates a goal of mapping 
terms from this particular manufacturing tusk- 
semiconductor fabrication-onto terms in the ge- 
neric model (Type 2 knowledge). 

Assistant: You could now add information to the do- 
main model to describe the sort of Finished-Part being 
manufactured. 

These suggestions-which the designer is free to ig- 
nore-appear in a number of forms. The assistant 
maintuins a prioritized agenda of goals, which it dis- 
plays in a window. The assistant operates continu- 
ously “in the background, ” and reorders and redis- 
plays its goal agenda in response to changes in the 
knowledge base. The assistant makes other sugges- 
tions by highlighting portions of Impulse-86 editing 
windows already visible on the screen (e.g., the as- 
sistant ‘s last suggestion could involve flashing the 
Finished-Part node in the graph displayed in Fig. 
2, accompanied by explanatory text, such as above). 

Designer: How? 

The assistant’s last suggested change was phrased 
in terms of a change to information encoded in the 
domain model. The designer asked how to implement 
this change, which suggests to the assistant that the 
designer does not understand how this information 
is to be encoded (Type 5 knowledge). It explains the 
change, in slightly less abstract terms-as changes 
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to the structure of the knowledge base (Type 3 
knowledge). 

Assistant: Create a subclass of the concept Finished- 
Part. 

Designer: How? 

The assistant infers that the designer does not un- 
derstand how to use the available editing tools (Type 
5 knowledge). The assistant repeats the last sugges- 
tion, in terms of Impulse-86 editing commands (Type 
4 knowledge). 

Assistant: Select the Create Object command in the 
KB Commands menu attached to the KB editor for the 
Manufacturing knowledge base. Respond to the Object 
Names: prompt with the name of the Finished-Part pro- 
duced by this manufacturing application, to the Object 
Type: prompt with class, to the Generalizations: prompt 
with Finished-Part, and to the Groups: prompt with any 
symbol you choose, or simply with (return). 

The designer carries out the above steps, and names 
the specific kind of$nished part being produced. 

Designer: Creates a subclass of Finished-Part called 
Integrated-Circuit.) 

Assistant: You should now add information which 
names the Raw-Material used to manufacture Inte- 
grated-circuits. Create subclasses of Raw-Material 
using the Create Object command as you did previously. 

(Types 2, 3, and 4 knowledge.) 

Designer: (Creates subclasses of Raw-Material called 
Silicon, Dopant, and Aluminum.) 

At this point, the model contains information which 
indicates that silicon, dopant, and aluminum are the 
raw materials used to manufucture integrated cir- 
cuits. Continuing in the same manner, the assistant 
prompts the designer to specialize Step, thereby de- 
fining the steps which compose the manufacturing 
process. As this contributes nothing new to our ex- 
ample, we leave out this part of the hypothetical de- 
sign session. 

In this example, Type 1 knowledge includes a knowl- 
edge base which contains a generalized domain model of 
manufacturing. Figs. 2 and 3 illustrate portions of this 
model. Fig. 2 portrays a taxonomy of manufacturing terms 
(e.g., Raw-Material and Finished-Part are both sub- 
classes of Material). The assistant copies this taxonomy 
for use as the kernel of the semiconductor model. Wher- 
ever the assistant prompted the designer with, “You 
should now add information. . . ,” it was suggesting a 
term in the kernel domain model which could be special- 
ized for semiconductor manufacturing. Fig. 3 indicates 
that the Manufacture object is described by two slots, 
Raw-Material and Finished-Parts. Each of these slots is 
further annotated by a Role facet, which encodes how the 
slot contributes to the meaning of the Manufacture ob- 
ject; values stored in the Role facet are drawn from a small 

Fig. 2 
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Taxonomy of terms in the Manufacturing knowledge base 

Synonyms: 
Groups: Generic 
Type: Class 
Edited: 13-Dec.87 12.42:03 PST By: Schoen 
Raw-Material: 
Role: Input 
Finished-Parts: 
Role: Output 

Fig. 3. Slots and facets in the Manufacture object 

set of terms defined elsewhere in the manufacturing 
knowledge base (e.g., Input indicates that the slot iden- 
tifies a quantity which is an input to the manufacturing 
process). Neither slot contains a value in the Manufac- 
ture object; however, sometime later in the design ses- 
sion, the assistant will suggest that the designer specialize 
this object, and provide fillers for the slots. 

Figs. 4 and 5 illustrate the state of the model sometime 
after the end of the session excerpt. The designer has cre- 
ated a subclass of Manufacture, called Process, which 
represents the semiconductor manufacturing process. He 
or she has also created a number of subclasses of Step, 
each of which represents a distinct subtask in the manu- 
facturing process. Fig. 4 displays the current taxonomy 
of domain terms. Fig. 5 displays the input and output re- 
lationships between materials in the actual manufacturing 
process. 

Knowledge of knowledge base design techniques, 
Strobe semantics, and Impulse-86 editing commands 
(Types 2, 3, and 4 knowledge) enables the assistant to 
translate high-level goals into concrete suggestions. For 
example, in order to explain its suggestion, “. . . add in- 
formation to the domain model to describe the sort of Fin- 
ished-Part being manufactured,” the assistant refers to 
its knowledge regarding the representation of domain 
terms. The designer is being asked to provide a term which 
specializes the class Finished-Part for the semiconductor 
domain. The knowledge that classes represent domain 
terms, and that specialization relationships between do- 
main terms are represented as subclass relations between 
corresponding classes, enables the assistant to suggest that 
the designer should create a subclass of Finished-Part. 

When asked for further help, the assistant refers to its 
knowledge of Strobe and Impulse-86 to direct the de- 
signer to create a subclass of Finished-Part. From 
knowledge of Strobe semantics, the assistant determines 
that a subclass of Finished-Part will be represented as a 
class object whose generalization is Finished-Part. From 
knowledge of Impulse-86, the assistant describes the se- 
quence of editing commands which will create the desired 
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\F.. _ nnshed Part-integrated-Circuit 

r anufacture--Process 

Wafer-Preparation 

Fig. 4. Taxonomy of terms in the Semiconductor Manufacturing knowl- 
edge base. 

Edited: 13~Dec-87 16:37’49 PST By: Schoen 
Raw-Material: Silicon, Dopants, and Aluminum 

Finished-Parts: Integrated-Circufts 

Fig. 5. Slots and facets in the Process object. 

subclass. Note that advice is being stated in terms drawn 
from the evolving domain model; we believe this in itself 
is an important form of assistance. In-context advice is 
more useful than that drawn from a printed manual, or 
from a canned example domain. The instructions apply 
directly to the development task at hand; the user is freed 
from having to draw (possibly flawed) analogies between 
example and real domains. Furthermore, since the assis- 
tant knows the exact sequence of editing commands 
needed to implement its suggestion, it could execute the 
commands itself and relieve the designer of a potentially 
tedious task. We expect such on-line help will ease the 
process by which designers become experts at using the 
tools provided by their environments. 

Another use of Type 2 knowledge we envision involves 
common practice in knowledge base design. We expect 
the assistant to know about cliche’s-common patterns of 
relationships between objects.’ Some of these cliches 
(such as consistent refinement of slot values across a sub- 
class taxonomy) represent “good practice” and will be 
encouraged by the assistant; others (such as misuse of the 
is-a relation) represent “bad practice” and will be dis- 
couraged. When the assistant recognizes a developing 
cliche, it will either offer to help complete the cliche, or 
suggest an alternative knowledge base structure which is 
more acceptable. 

‘We use the term clicht in much the same manner as in KBEmacs [60]. 
However, our cliches are structural-abstracting relations between con- 
cepts-while those of the Programmer’s Apprentice are procedura-ab- 
stracting programs. 

As an example of this sort of help, we present another, 
short excerpt from our hypothetical design session. This 
excerpt occurs sometime later in the session; in the in- 
terim, the designer has added a number of new terms and 
filled in a number of slots. See Figs. 6-8. 

Assistant: I notice you’ve created a number of sub- 
classes of Wafer-Preparation. Let’s look at Produce- 
Electronic-Grade-Silicon. The Output of this Step is 
Electronic-Grade-Silicon. Since Produce-Electronic- 
Grade-Silicon is a subclass of Wafer-Preparation, and 
Electronic-Grade-Silicon-Wafer is the output of Wafer- 
Preparation, I would have expected Electronic-Grade- 
Silicon to be a subclass of Electronic-Grade-Silicon- 
Wafer. 

Perhaps you’ve incorrectly defined Electronic-Grade- 
Silicon, or perhaps you intended a relation other than sub- 
class to hold between Wafer-Preparation and Produce- 
Electronic-Grade-Silicon. Since for each of the sub- 
classes of Wafer-Preparation, the value of Output slots 
appears as the value of the Input slot of another subclass, 
I suggest each of the subclasses is actually a substep of 
Wafer-Preparation, ordered by the relation between the 
Input and Output slots. Is this what you meant? . 

A brilliant deduction by the assistant. How realistic 
is it? The generic manufacturing task includes infor- 
mation about likely relations that occur; substep re- 
lations are very common in manufacturing, so the 
assistant is justified in suggesting it as possible cor- 
rection. Furthermore, the substep relation is a kind 
of part-whole relation; the assistant knows that in 
such relations, there will be a part or parts which 
share structure with the whole. In this case, Wafer- 
Preparation shares its input with Produce-Elec- 
tronic-Grade-Silicon, and its output with Saw-Into- 
Wafers. Thus, the assistant concludes that substep 
is the appropriate relation. 

In a narrowly circumscribed domain, like semi- 
conductor manufacturing, it is reasonable to expect 
that a small number of relation types will be appli- 
cable; however, in the general case, we expect this 
type of inferencing to become computationally in- 
tractable. It is therefore important for the assistant 
to have a facility for interacting with the designer to 
select (or define) the appropriate relation type. For 
example, if the assistant is not able to suggest a sin- 
gle most likely replacement, or if the designer dis- 
agrees with the assistant’s suggestion, the assistant 
displays a menu of possibilities (potentially all man- 
ufacturing relation types, or all known relation 
types), and allows the designer to choose.2 We as- 
sume here that the designer has agreed with the as- 
sistant; the assistant then rearranges the knowledge 
base and displays the result (Figs. 9 and 10). 

In the preceding excerpt, the assistant recognized a 
“misuse-of-is-a” cliche, by recognizing that the value 

*The assistant could be expected to learn from its mistakes, using strat- 
egies similar to those employed in the LEAP system [38]. 
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Fig. 6. Later taxonomy of terms in the Semiconductor knowledge base. 

Object: Wafer-Preparation 
Sy&nyms: 
Groups: 
Type: Class 
Edited: 13.Dee-87 17:02:39 PST By: Schoen 
Input: Metallurgical-Grade-Silicon 
Role: Input 
Output: Electronic-Grade-SIIIcon-Wafers 
Role: Output 

Fig. 7. The Wafer-Preparation object 

Object: Produce-Electronic-Grade-Slllcon 
Synonyms: 
Groups: 
Type: Class 
Edited: 15.Dec.87 15 12 09 PST By: Schoen 
Input: Metallurgical-Grade~Slllcon 
Role: Input 
Output: Electronic-Grade~Slllcon 
Role: output 

Fig. 8. The Produce-Electronic-Grade-Silicon object 

(Electronic-Grade-Silicon) of a  slot (Output) in a sub- 
class (Produce-Electronic-Grade-Silicon) was not a 
subclass of the value (Electronic-Grade-Silicon-Wafer) 
of the same slot in the superclass (Wafer-Preparation). 
It further suggested a correction by finding a better clichC 
(step-substep), which was both a likely candidate given 
the domain, and a fitting correction, given the information 
(input-output relationships) already encoded in the 
knowledge base. 

C. Further Opportunities for Assistance 
The sorts of assistance we have described so far pertain 

largely to the acquisition of the domain model-the vo- 
cabulary of terms and relations-of a  domain. However, 
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m  
Object: Wafer-Preparation 
Synonyms: 
Groups: 
Type: Class 

Input: Metallurgical-Grade-SIllcon 
Role: Input 

Output: Electromc-Grade-Sllvcon-Wafers 
Role: Output 

Subtasks: Produce-Electronic-Grade-SIllcon. GrowCrystals. Shape- 
:rystals. and Saw-Into-Wafers 

Fig. 10. Corrected Wafer-Preparation object. 

the role of an intelligent assistant is not limited to this 
aspect of knowledge acquisition. The domain model is 
not a complete knowledge base; it lacks necessary control 
and task-specific inference knowledge. Clearly, opportu- 
nities exist for an assistant to guide the knowledge engi- 
neer and domain specialist through the acquisition of these 
remaining classes of knowledge.3 We  intend to explore 
integrated acquisition of domain, control, and task-spe- 
cific inference knowledge in the assistant. For these as- 
pects of knowledge acquisition, the assistant will require 
knowledge about AI problem solving methods and strat- 
egies. 

The assistant can also play a role in the testing and val- 
idation of a  KBS; once the knowledge base contains 
enough information, the assistant is able to record the re- 

‘The process is most likely not a  sequential ordering of phases. W e  
believe that domain,  control, and task-specific inference knowledge will be  
acquired in an  interleaved fashion; attempts to correct deficiencies in one 
class of knowledge may highlight deficiencies in one or both of the other 
classes. 
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sults of individual tests and (perhaps) to generate test cases 
(by examining the encoded knowledge). As additional 
knowledge is acquired, the system must continue to suc- 
cessfully treat prior test cases. The assistant can play a 
useful role in checking that newly added knowledge does 
not conflict with existing knowledge-that the evolving 
knowledge base remains self-consistent. As in TEIRE- 
SIAS [21] and LEAP [38], failed test cases can identify 
missing and/or incorrect knowledge. Furthermore, the as- 
sistant can record dependencies between parts of the 
knowledge base; it is continuously involved in the evo- 
lution of the knowledge base and thus has a historical rec- 
ord of the development. This information can be used in 
two ways: the assistant can explain how a change to one 
part of the knowledge base will affect other parts, and can 
also undo changes, to allow alternate attempts at knowl- 
edge base evolution. As we have stated, maintenance of 
the knowledge base in this manner is likely to continue 
throughout the lifetime of a knowledge-based system. 

In the next two sections, we discuss the two enabling 
technologies upon which our knowledge-intensive devel- 
opment environment rests: Strobe, an object-oriented pro- 
gramming language, and Impulse-86, a framework for 
constructing user interfaces. Whereas the assistant is an 
active tool, these are passive substrates which underlie it. 

III. OBJECT-ORIENTED PROGRAMMING 

Object-oriented programming is the foundation of our 
knowledge-intensive development environment. It con- 
tributes towards a programming methodology, which in- 
tegrates diverse components of the development environ- 
ment, and a representation language, which models both 
domain-level and development environment knowledge. 
The use of object-oriented programming for building ex- 
pert systems and other knowledge-based applications, has 
been previously described [23]. In this article, we de- 
scribe the role of object-oriented programming in building 
development environments for knowledge-based systems. 
In this section, we provide a brief overview of the object- 
oriented paradigm. 

KBS’s typically evolve in an incremental refinement 
process characterized by an exploratory programming 
style [27], [ 141, [46]. The representation and reasoning 
substrate is central to the KBS developer/maintainer in 
managing the complexity of the evolving system. A clear 
conceptual model of the domain of application is essential 
for managing this complexity. 

Object-oriented programming has been found by sim- 
ulation specialists, cognitive psychologists, and artificial 
intelligence scientists to be very useful in modeling-of 
physical systems, human systems, and artificial systems. 
In constructing software systems to model complex phe- 
nomena, it is advantageous to organize computation 
around programming constructs whose internal structure 
and interrelationships explicitly reflect those of constructs 
in the physical world in which the resultant systems are 
to operate. Clarity is especially important because of the 
inherent complexity of the physical world-this complex- 

ity must be managed in a software system if it is to be 
understandable, explainable, extensible, maintainable, 
and reusable. 

Furthermore, the object-oriented style encourages mod- 
ular code and encapsulation with well-defined interfaces. 
Inheritance of properties simplifies code-sharing. This 
leads to space-efficient code and to ease of maintenance 
and specialization, as has been found in a variety of sys- 
tems [25], [61], [6]. In addition, many traditional KBS 
representational entities (e.g., rules, constraints) may be 
encoded as objects and invoked in a uniform manner-via 
messages. 

A clear model of the evolving system is as important to 
the domain specialist as it is to the KBS developer. Ob- 
jects appear to be a natural and understandable knowledge 
organizing mechanism to humans not normally involved 
in computation [18]. The concept of an object as a pro- 
totype for encapsulating information-both data and pro- 
cedures-is well-understood and used by humans, as are 
the concepts of classes and instances, taxonomies-and 
taxonomic inheritance of properties (along with a number 
of other forms of inheritance). 

A. Background 
In an object-oriented software system, the central con- 

struct is the abject-a data structure similar to a record. 
In a medical consultation system, such as NEOMYCIN 
[ 161, we find objects that correspond to important medical 
concepts, like patient, drug, organism, disease, and so 
on. Objects are linked together in a variety of relation- 
ships in an object-oriented system. In NEOMYCIN, it is 
explicitly recorded that viral meningitis is a kind of men- 
ingitis, which is in turn a kind of infection. This hierar- 
chical a-kind-of relation-also called the taxonomic rela- 
tion-is carefully supported by object-oriented 
programming languages. Unlike the simple support pro- 
vided for records by ordinary programming languages, 
these object-oriented languages support inheritance of 
properties. If it is recorded that meningitis is an infection 
situated in the cerebrospinal fluid (CSF), then it is not 
necessary to separately record that viral meningitis is also 
situated in the CSF. This information is available--truns- 
pare&y to the modeler-via inheritance. 

In object-oriented programming, the structure of the 
knowledge used in the software system is defined by the 
structure of the physical world-and not by the specific 
task at hand. Contrast this with the normal procedural 
structuring used in almost all computer programs. Be- 
cause the computational structure is determined by the 
structure of the domain being modeled, object-oriented 
systems are more readily understood by both domain spe- 
cialists and programmers. The objects themselves provide 
a natural atomic stmctutre-a level of detail appropriate 
to the world being modeled. The relationships that link 
the objects-especially the hierarchical taxonomic rela- 
tionship-lend increased structure. The collection of ob- 
jects that model a particular domain, often called a knowf- 
edge base, captures the static knowledge of that domain. 
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The knowledge base provides a kind of computational 
skeleton for a simulator, a reasoning system, or indeed 
any procedure that operates on it. 

Over the years a number of object-oriented languages 
have been developed. One of the earliest was Simula, an 
extension to Algol designed for simulation [20], [5]. Sim- 
ula defined much of the vocabulary of object-oriented 
programming. During the 1970’s, Smalltalk was devel- 
oped as a vehicle for making computers easier to use [24]. 
It has become the best-known object-oriented language, 
in large measure due to the revolutionary impact it had on 
integrated programming environments and user inter- 
faces. In the artificial intelligence (AI) community, a 
number of object-oriented languages were developed to 
attack problems in vision and natural language under- 
standing (e.g., KRL [7], FRL [44]). (The AI languages 
were often called frame-based at the time [37].) Whereas 
Simula and Smalltalk were independent, free-standing 
languages, most of the AI languages were embedded in 
an underlying programming language, Lisp. Commercial 
systems have started to become widely available in recent 
years (e.g., KEE [30], Loops [6]). Object-oriented pro- 
gramming concepts have started to appear in traditional 
programming languages; C + + [55] and Objective-C [ 191 
are both object-oriented extensions to the standard C lan- 
guage. 

B. Features of Object-Oriented Programming 
Languages 

We devote the remainder of this section to the salient 
features of object-oriented programming languages. We 
concentrate on the features useful for modeling the static 
structure of a domain. We do not address the issue of mes- 
sages and computation with an object-oriented skeleton. 
See [39], [54] for discussion of these issues. 

The knowledge base designer’s assistant itself is writ- 
ten in Strobe [50], a Lisp-based object-oriented program- 
ming language. Strobe is representative of many such lan- 
guages, which provide a powerful set of tools that 
augment Lisp; moreover, such languages can themselves 
be embedded in higher-level systems that offer greater 
representational structure and modeling complexity. 
Strobe has been implemented in both Interlisp-D and 
Common Lisp; a subset of Strobe has been implemented 
in C. 

Basic Concepts: To begin, we define the basic data 
structures. From largest to smallest level of granularity, 
the structures commonly provided by Lisp-based object- 
oriented languages are the following: 

Knowledge Base: A taxonomically organized collec- 
tion of objects of a domain. A knowledge base typically 
represents a model of some physical domain or system. 
Each knowledge base is a separate namespace of objects. 
An application may be organized around several knowl- 
edge bases. 

Object: A record-like structure which encapsulates a 
coherent set of related data and procedures. An object be- 
longs to a particular knowledge base. It typically repre- 

sents a single concept in the domain or system modeled 
by the knowledge base. An object is identified by a unique 
name within a knowledge base-objects of the same name 
may exist in different knowledge bases. 

Each object has an associated type. Objects that repre- 
sent particular, unique individual entities in the model are 
called individual or instance objects. Objects that repre- 
sent a set of entities (either entities that actually exist in 
the model or entities that could potentially be con- 
structed), are called class objects. 

Slot: A component of an object. A slot can represent a 
property or attribute of an object, a procedure that the 
object can execute (often called a method) to exhibit some 
behavior of the object, or a relationship between the ob- 
ject in which the slot resides and one or more other ob- 
jects. 

Facet: A component of a slot-a place to encode an- 
notations regarding the meaning of the slot with respect 
to its object. Many object-oriented languages define a da- 
tatype facet, which indicates what type of datum is (or 
can be) stored as the value of the slot. Applications can 
further define their own facets (as in the role facets illus- 
trated in Fig. 3). 

Taxonomic Structure in Knowledge Bases: Objects 
form the atomic structure of knowledge bases. Additional 
structure is imposed by relationships that exist among the 
objects. Object-oriented languages support a variety of re- 
lationships-some of which are hierarchical. The fore- 
most relation supported by all object-oriented languages 
is the taxonomic relation, sometimes also called the a- 
kind-of, is-a, or generalization/speciJication relation. Fig. 
11 shows a taxonomic hierarchy associated with the as- 
sistant’s knowledge of set-theoretic properties of rela- 
tions (a form of Type 3 knowledge discussed in Section 
II). 

From the figure, we see that Transitivesymmetric- 
ReflexiveRelation is a kind of Relation. This is an 
expression of the universally quantified conditional: 

VX( TransitiveSymmetricReflexiveRelation (X ) 

-+ Relation (X)) ; 

that is, if X is-u TransitiveSymmetricReflexive- 
Relation, then X is-u Relation. We can also say that 
TransitiveSymmetricReflexiveRelation is a-kind-of Re- 
lation. In addition, the taxonomic relation is transitive. 
So, because: 

VX( EqualityRelation (X ) 

+ TransitiveSymmetricReflexiveRelation (X )) , 

we can conclude that: 
VX( EqualityRelation (X ) + Relation (X)) 

Explicit representation of hierarchical taxonomic relation- 
ships is a powerful conceptual modeling tool. It has been 
used extensively in the physical sciences as a way of 
bringing order-through classification-to systems ob- 
served in the real world. For computational models, at the 
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Fig. 1 I. Taxonomic hierarchy of relations. 

very least, it imposes a perspicuous structure on the do- 
main knowledge being represented. As such, it helps to 
manage the complexity inherent in models of substantive 
real world systems. 

Most object-oriented languages support taxonomic lat- 
tices; that is, objects may have multiple generalizations. 
In Fig. 12, for example, the transitive, symmetric, ,and 
reflexive characteristics of relations are represented sep- 
arately. This permits useful partitioning of information, 
advantageous because it fosters clarity and because it re- 
duces the amount of information that otherwise would 
need to be duplicated in several classes. In the figure, 
transitivity information is stored in TransitiveRelation, 
rather than being duplicated in all transitive relations (see 
[54] for another example). Taxonomic lattices are often 
called tangled hierarchies. It is possible to get by without 
support for multiple generalizations. Many simple object- 
oriented languages do not support them because they in- 
crease the complexity of the implementation of the object- 
oriented language itself. However, if multiple generali- 
zations are not supported, the application designer is often 
forced to write application-specific code that amounts to 
the same thing. Furthermore, the designer must spend time 
worrying about these situations rather than concentrating 
on the already difficult enough task of constructing an ac- 
curate and useful model. 

Property Inheritance: If explicit representation of tax- 
onomic relationships served as nothing more than a con- 
ceptual modeling tool, it would be very powerful. But, it 
has an additional purpose. It serves as the basis for prop- 
erty inheritance. For example, in the relation system, if 
we record that descendants of ReflexiveRelation are re- 
lations in which reflexivity holds, then we need not sep- 
arately record that WeakPartialOrderRelation and 
EqualityRelation are reflexive. This fact is transparently 
accessible via the inheritance mechanisms supported by 
the object-oriented language. Inheritance of properties 
follows naturally from the the universally quantified con- 
ditions noted earlier: if X is an EqualityRelation-u-kind- 
Of ReflexiveRelation-then the properties of 
ReflexiveRelation are also properties of all Equality- 
Relations and hence are properties of X. Were we to ask 
the question: Are instances of EqualityRelation rejex- 
ive?, an object-oriented system would respond affirma- 
tively . 

Inheritance is not only a powerful conceptual modeling 
tool; it is also a powerful programming tool. It encour- 
ages modularity of design through elision and rejnement. 
We achieve elision of description of objects through in- 
heritance, which promotes a compact representation-only 
those properties of an object which are specific to the ob- 
ject itself need be explicitly stated. We rejine properties 
within specializations, thus simplifying incremental 

TRICT.PARTIAL-ORDER-RELATION RELAT,DN~~~~~~~~DRDER.RELATloN 
Fig. 12. Taxonomic lattice of relations. 

knowledge base extension; properties generic to an ob- 
ject’s class can be replaced by similar, but more specific 
properties, appropriate to a new subclass, independent of 
extensions and refinements in different branches of the 
taxonomic hierarchy. 

Classes and Instances: Figs. 11 and 12 show only class 
objects. A class object defines the generic properties of 
all of its specializations. Since Relation is a class object, 
it defines a set of properties for all subclasses and in- 
stances of Relation. A class object may also define de- 
fault values for the properties it defines, although this is 
not necessary. Subclasses and instances of the class are 
assumed to have those values. For example, assume Re- 
lation contains a detect slot which holds rules valid for 
detection of equality relations. The rules in the detect slot 
are by default assumed to be valid for detection of all 
subclasses and instances of Relation. If a default value is 
not specified for a property, nothing is assumed about its 
value in subclasses and instances. 

In many object-oriented languages, default values may 
be overwritten, refined, or cancelled in specializations. 
For example, the detect slot of Relation may be specified 
as unknown; however, it may be refined in the class 
EqualityRelation to (rule184 rule116 . . .). Defaults are 
very useful in knowledge-based systems-they can be 
used to make weak inferences in the absence of more spe- 
cific information-and later overridden as more specific 
information becomes available. 

Most object-oriented languages treat the is-a relation, 
defaults, and cancellation informally. For example, the 
is-u relation often conflates the notions of a prototypical 
member of a set and a universally quantified conditional. 
Further, permitting cancellation of inherited defaults can 
weaken the descriptive power of an object-oriented rep- 
resentation language (simply because an object matches 
the description of some class X, it may not necessarily 
match the description of Y-a superclass of X-due to pos- 
sible cancellation of properties in X ); hence, if an object- 
oriented language allows cancellation, we can only use 
the taxonomic hierarchy for weak inferencing. See [9] and 
[8] for a detailed discussion of these issues. 

IV. IMPULSE-86: SUPPORT FOR USER INTERACTION 

Impulse-86 [49] is a Strobe-based tool which supports 
user interface design. Responsible for the low-level “me- 
chanics” of user interface support, it is a key component 
of the interaction substrate in the knowledge-intensive de- 
velopment environment. In this section, we present a set 
of requirements for user interfaces and user interface 
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toolkits, and discuss how Impulse-86 fulfills these re- 
quirements. By way of illustration, we present four ex- 
amples of Impulse-86 interfaces, each intended to support 
the activities of a specific class of user. We then discuss 
the framework in which these interfaces are constructed, 
using the examples to illustrate the main points. 

Impulse-86 consists of an extensible kernel, providing 
support for the basic requirements of window-oriented 
user interfaces, and a set of application-specific exten- 
sions built around the kernel. It is the third in a series of 
systems beginning with Impulse [45]; while the first two 
were designed for the explicit purpose of editing Strobe 
knowledge bases, Impulse-86 is a general-purpose user 
interaction framework. It enables developers and end users 
to construct customized, domain-specific interfaces for 
their systems, without being experts in interactive graph- 
ics (knowledge base editing is a specialized extension). 
Our approach is to provide an extensive set of “building 
blocks,” and a uniform framework in which to assemble 
them. 

Although Impulse-86 has evolved from a knowledge 
base editor to a user interaction framework, we continue 
to view its kernel task as a form of editing. We take the 
point of view that editing entails many kinds of interac- 
tions between a user and a software system. The user 
views the state of the system, and controls or changes the 
state of the system. An editor is an entity that mediates 
these viewing and controlling interactions-presenting the 
user with a view of the system and effecting the desired 
control. This definition encompasses traditional text ed- 
iting, browsing, program development, debugging, and 
end-user interaction. 

Knowledge-based systems typically consist of many 
complex structured objects, connected by several rela- 
tionships, and are intended to model richly structured do- 
mains. As a result, both the KBS developer and end user 
are typically interested in interacting with (i.e., under- 
standing, changing, extending, and using) three major 
kinds of entities: objects and their internal structure, re- 
lationships among objects, and complete systems of ob- 
jects, relationships, and code-including their dynamic 
behavior. 

Based on the considerations thus far presented, we have 
been led to the following design goals for interfaces con- 
structed with Impulse-86: 

l Effective integration and use of high resolution bit- 
mapped displays, pointing devices, and keyboards. 

l Flexible support for varied methods of user interac- 
tion for both viewing and controlling systems (e.g., 
graphics, animation, menus, pointing and smart typein, 
with facilities like partial name recognition, spelling cor- 
rection, and line editing). The editor should support in- 
teraction with domain-specific information in a form nat- 
ural to an end user familiar with the domain. 

l Specific aids for browsing. A user should be able to 
quickly examine an evolving knowledge base, alternate 
hypotheses constructed by a KBS, user-defined interob- 
ject relationships, and so on. 

l Unlimited interaction contexts for viewing and 
changing different parts of a system simultaneously. 

l Programmatic access to interaction mechanisms. A 
user should be able to call upon building blocks in the 
editor in the midst of normal programs. 

l Organizational support for customization and exten- 
sion.4 

There are several other useful goals that Impulse-86 it- 
self does not address, including user modeling, assistance 
to a user in managing trouble, recovery from error, check- 
pointing, security, and so on. Extensions along these di- 
mensions (such as the designer’s assistant we discussed 
in Section II) are more appropriately constructed on top 
of the kernel environment, rather than inside it. 

Fig. 13 is a snapshot of a typical Impulse-86 screen, in 
which six interaction contexts are active. Many Impulse- 
86 interfaces follow a convention in which information is 
displayed in a central window, to which one or more 
menus are attached. For example, the small window in 
the upper right comer of the screen, labeled “Impulse- 
86,” displays the names of each loaded Strobe knowledge 
base; the menu attached to this window contains com- 
mands related to loading, storing, and editing Strobe 
knowledge bases. The editor in the bottom right comer of 
the screen is a Strobe knowledge base editor; the central 
window contains information about the knowledge base, 
the upper menu contains knowledge-base editing com- 
mands, and the lower menu contains an alphabetized list 
of each of the objects in the knowledge base. Selecting an 
object from this latter menu provides a “focus” for some 
commands (e.g., the Edit Object command) in the for- 
mer menu. In the following, we discuss the remaining ed- 
itors in Fig. 13 in greater detail. 

A. Examples of Impulse-86 Editors 
In this section we show a number of brief examples of 

specialized Impulse-86 editors. Our aim here is to dem- 
onstrate the diversity of interface styles that can be sup- 
ported by the framework. Our examples depict editors ap- 
plied to knowledge bases which form part of the designer’s 
assistant, and which encode information about both rela- 
tion types and management of task agendas. 

7’he Object Editor: The object editor is used for editing 
a single Strobe object and its internal structure. Fig. 14 
depicts a user’s view of the standard object editor; the 
object being edited encodes knowledge about relations. 

The object is presented to the user in a window with 
attached menus. The first five lines show the values of 
properties that are common to all objects; the remaining 
lines display the object’s slots. The name of a property or 
slot is shown in boldface; if a slot has synonyms, they are 
enclosed in set braces; the slot’s value (if any) is shown 
in lightface, following a colon; ( t ) indicates that the slot 

‘Stallman defines extensibility relative to EMACS: “, the user should 
be able to add new editing commands to change old ones to fit his needs, 
while he is editing” 1531. We go beyond ron~mand extensibility, aiming 
for extensibility with respect to what is viewed, how it is viewed. and how 
it may be changed. 
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Fig. 13. Example screen during a typical Impulse-86 editing session 

Fig. 14. Object editor 

is inherited from a more general object. We have found 
these conventions useful, but they are only defaults. A 
user can override them to customize the way this infor- 
mation, or other information, is presented. 

The top two command menus enable a user to (for ex- 
ample) rename the object, change any of the slots, create 
new slots, delete or rename slots-standard editing oper- 

ations. A small mark to the right of a command indicates 
the existence of subcommands that extend the function- 
ality of that command. We have adopted the discipline 
that a left mouse button selection invokes the command 
shown, while a middle mouse button selection pops up a 
menu of subcommands (or a menu of arguments that fur- 
ther specify a command). 

The two menus show the objects most closely related 
(taxonomically) to the object being edited; they can be 
used to invoke a new editing context in which one of those 
relatives is the center of attention. 

Items in the display may be selected with the mouse as 
arguments to a command. A selection stack is maintained, 
with individual selections (foci) indicated by different 
styles of highlighting. As with other defaults, the high- 
light styles may be changed by the user. 

A variant of the object editor is visible in the lower left 
comer of Fig. 13. This variant-the fast object editor-is 
designed for more experienced users of Impulse-86. It 
displays precisely the same information as does the stan- 
dard object editor, but presents no command menus. In- 
stead, these menus are available as “pop-up” menus, and 
appear when a mouse click occurs over the object name 
or any of the slot name captions. Because the fast object 



SCHOEN P, al.: DESIGN OF KNOWLEDGE-BASED SYSTEMS 

TIONS: IMPULSE-%-RULE 

an-68 17:Ol 38 PST By: Schoen 

EXISTS ENTRY 
E ENTRIES AGENDA) 

oth’,“P,‘f;VEETRY ‘ENTRIES AGENDA) 

TRANSLATION[TEXT): 

(1) There exists an element from the ENTRIES of AGENDA <ENTRY> 
such that the OPERATION of ENTRY is ‘OPERATION’. and 
such that the EDITEE 01 ENTRY is ‘EDITEE’ 

I THEN: 
(1) Remove ENTRY from the ENTRIES of AGENDA 

DOCUMENTATlON(TEXT](‘): 
SOURCEt-TEXT)(^): 
AUTHOAITEXT)(‘): 
BREAK[EXPR](,‘): 

1783 

Fig. 15. Rule editor 

editor spends no time creating permanent menus, it can 
be displayed faster than can the standard object editor; 
furthermore, since it obscures less screen space, more of 
these editors can be made visible without occluding one 
another. 

The object editor is used mainly by the knowledge base 
maintainer-typically a computer scientist-although it 
can also be useful to a domain specialist. It offers a view 
and interaction style for the domain knowledge encoded 
by the system-more as a computational entity than a 
mathematical entity (i.e., the implementation of the math- 
ematical concept of a relation as a software object en- 
coded in an object-oriented language). In later examples 
we will see other ways of interacting the domain knowl- 
edge-each appropriate to a specific task. 

The Rule Editor: The rule editor is used for editing a 
single Strobe rule. Fig. 15 depicts a user’s view of the 
standard rule editor; the rule being edited encodes a single 
piece of knowledge used by the designer’s assistant in 
managing task agendas. This editor is commonly used by 
developers and by domain specialists. It is not intended 
for end-users of a knowledge-based system. 

A Strobe rule is encoded as an object. As a result, the 
rule editor is rather similar to the object editor. In this 
case, however, commands specifically useful for dealing 
with rules replace or extend the basic object-related com- 
mands (e.g., the Translate Rule command, used to gen- 
erate the English translation of the rule shown at the bot- 
tom of the figure). Furthermore, the slots of the rule are 
grouped together and captioned in a different manner. For 
example, the slots that encode left-hand side conjuncts are 

grouped under the IF: caption. Similarly, the slots that 
encode right-hand side actions are grouped under the 
THEN: caption. 

In the figure, we see another standard attention-focus- 
ing mechanism supported by Impulse-86. Some com- 
mands in the top two menus on the left-hand side of the 
main window are grayed over. If a user selects a datum 
for which these commands are relevant, then Impulse-86 
will make them visible to allow their selection. (Another 
example of this behavior is also visible in the top two 
menus of Fig. 14.) 

The Graph Editor: Graphs are a natural representation 
for viewing relationships between and among several ob- 
jects in a system. Impulse-86 provides a simplified, ob- 
ject-oriented interface to a variety of graphing primitives, 
so users can edit interobject relationships graphically. 

A graph editor displays some or all of the objects tied 
together by a relationship (or set of relationships). For 
example, the graph editor in Fig. 16 shows a taxonomic 
hierarchy associated of relations. Each node represents 
one object. More specialized objects appear to the right 
of their generalizations. 

Graph editors enable a user to see and rearrange the 
overall structure of the system as implied by the graph 
relationship. Through pop-up menus, the user can add or 
delete links, and can easily invoke an interaction context 
that shows more detail for any object in the graph. Graph 
editors are like other editors with regard to defaults and 
foci. A user may further customize the graph editor with 
respect to fonts, layout (e.g., vertical versus horizontal), 
link types (e.g., dashed versus solid), node display (e.g., 
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bitmaps versus names), amount of information presented, 
and so on. These customizations typically require no more 
than simple declarative changes to default values. 

Impulse-86 has a number of built-in graphing relation- 
ships, such as specialization and generalization. In addi- 
tion, it supports construction of customized graphs, based 
on user-specified functions, that, given a datum (e.g., an 
object), generate its successors one graphic link away 
(e.g., according to a part-of relationship). Impulse-86 
takes care of the mechanics of computing and displaying 
the transitive closure of the graph generator function, 
making the nodes of the graph sensitive to selection with 
the mouse, attaching the menus, and so on. 

The views offered by graph editors are useful to both 
developer/maintainers and to domain specialists. In ad- 
dition, we will later see how some graphs can be useful 
to end users of systems. For example, the graph of Fig. 
16 is particularly useful to a domain specialist in under- 
standing how much of the standard set-theoretic relation- 
ship vocabulary has been encoded. Such graphs are per- 
vasive in the sciences. They help show skeletal models of 
physical domains. 

The SpeciJcation Editor: The forms of assistance we 
discussed in Section II require the assistant to understand 
an evolving domain model as encoded by the designer in 
an object-oriented framework. The assistant must “ab- 
stract” the domain model from the implementation-level 
data structures in the knowledge base. It depends on the 
designer having chosen an appropriate grain-size at which 
to represent the model. 

An alternate approach we are considering involves pro- 
viding an Impulse-86 editing interface customized to the 
task of entering terms and relations in the domain. This 
interface would encourage the designer to “sketch” in- 
formation at an appropriate level of granularity, and would 
prevent him or her from entering the implementation-level 
knowledge base directly. Instead, the assistant would pro- 
duce the knowledge base by analyzing information re- 
corded by the custom interface. 

Fig. 17 illustrates our current implementation of the 
specification editing interface. The interface allows a de- 
signer to enter the primary terms and relations of a do- 
main, without having to declare how the terms and rela- 

Fig. 17. The specification editor. 

tions are actually encoded in a knowledge base. The editor 
consists of a “workspace” (the main window), and two 
iconic menus. The operations menu selects the editor 
mode; from top to bottom, the available modes are select 
concept or relation, create concept, delete concept, 
create relation, and delete relation. The link type menu 
in the middle selects the type of relation to be created 
when the editor is in create relation mode. There are two 
predefined relation types-subclass (i.e., the is-a rela- 
tion) and subpart (for encoding part-whole decomposi- 
tions). The designer can define additional relation types 
by selecting the (New Link Type) entry in the fink type 
menu; for example the successor relation was defined in 
this manner. The workspace depicts a collection of terms 
and relations; in Fig. 17, for example, the Process Step 
term has two subclasses: Wafer Preparation and Epi- 
taxy. Wafer Preparation has a successor-Epitaxy-and 
a subpart-Purify MGS to EGS. 

When the designer is satisfied with the model depicted 
in the workspace, the assistant constructs a Strobe imple- 
mentation of the model. Once again using its knowledge 
of KBS design techniques and of Strobe semantics (Types 
2 and 3 knowledge), the assistant chooses to implement 
domain terms as Strobe classes, the relations between 
terms as slot values. Knowledge about relations (Type 3 
knowledge, such as that illustrated in Section III) can help 
characterize new relations defined by the designer. For 
example, if the successor relation is seen to be transitive, 
irreflexive, and asymmetric, the assistant can assume the 
relation is a strict partial order; this information may be 
useful later when verifying the consistency of information 
encoded in the knowledge base, as well as in presenting 
a graphical depiction of such information. 

We believe this type of interface will help the designer 
concentrate on specifying domain principles, rather than 
computational entities. The designer is not required to de- 
clare how terms and relations are implemented (i.e., 
which are the objects and which are the slots); the actual 
encoding of the domain knowledge can be performed 
later, at least partially by the assistant. By contrast, an 
interface composed of Impulse-86 object and slot editors 
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would immediately force the designer to decide how to 
represent terms and relations, a  decision which might have 
to be reconsidered later as the knowledge base evolves. 

B. The Impulse-86 Substrate 
The Impulse-86 substrate contains five major building 

blocks: Editor, EditorWindow, PropertyDisplay, Menu, 
and Operations. Each building block, or part, is a  Strobe 
object in the Impulse knowledge base. Each embodies 
special knowledge that enables it to fulfill a  particular role 
in an interface (described below). 

Editor: The editor is the central object. It mediates in- 
teractions between the user and the editee-the domain 
focus-typically a part of a  knowledge base (analogous to 
the Smalltalk model [24]). Together with its components, 
it dejines a user interface-the way information is viewed 
and controlled. 

Editor instances are built from an editor class by tem- 
plate instantiation. By instantiating a separate editor for 
each editee, Impulse-86 enables an unlimited number of 
independent interaction contexts to exist simultaneously. 

Editors have components drawn from any of the five 
major classes (or from additional classes defined by a 
user). Editors are explicitly permitted to have other edi- 
tors as components (and so on, in a recursive fashion). 
Support for recursive decomposit ion is important. It en- 
ables the construction of an editor whose composite struc- 
ture parallels the composite structure of its editee. Knowl- 
edge about the way composites are structured in the 
application domain may therefore be embedded in the 
structure of its interfaces. 

Fig. 18 shows the editor structure for the class of object 
editors. Each object editor instance is generated from this 
template. Fig. 19 shows the instance corresponding to the 
object editor shown in Fig. 14. In both graphs, an arc 
indicates that the object on the right is a  component of the 
object on the left. Instantiated components are shown in 
lightface; non-instantiated components are in boldface. 
(Figs. 18 and 19 were generated from Impulse-86 spe- 
cialized graph editors.) 

In this example, ObjectEditor and SlotEditor are both 
editors. The ObjectEditor mediates interactions with the 
object-specific properties (e.g., the object’s name and 
synonyms), while the SlotEditor mediates interactions 
with the slot-specific properties (e.g., the slot’s name and 
synonyms). 

Subeditors can be dynamically added to, and removed 
from, an instantiated editor. Impulse-86 allows a user to 
specify (via a declaration or a method) a mapping between 
a class of objects in a domain knowledge base and an ed- 
itor class to be used for them (e.g., the RuleEditor for 
Rule objects). 

EditorWindow: The editor window manages the screen 
context of a  collection of editors. It is responsible for per- 
forming the usual window operations (e.g., scrolling, re- 
painting, reshaping). It also maintains a correspondence 
between editees and the window regions in which the ed- 
itees are displayed. This enables both data selection by 
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mouse pointing and efficient update when parts of an 
overall domain structure are changed. The window also 
records foci-items selected by the user as arguments to 
a command. 

Each editor may have at most one window among its 
components. When an editor has subeditors, some or all 
may share the same window, or utilize separate windows. 
Fig. 19 shows that ObjectEditor and SlotEditor in- 
stances both share the same instance of Object- 
EditorWindow. 

PropertyDisplay: The property display presents a view 
of an editee in a window. Impulse-86 has a number of 
different kinds of display, each implementing a distinctive 
visual style-and a user can define new types of display. 
A property may be active (i.e., have regions sensitive to 
mouse selection). 

A property display is also responsible for setting up a 
correspondence between its editee and the window re- 
gions in which the editee is displayed. Impulse-86 has 
been designed so that property displays need not be in- 
stantiated (although it is straightfoward to do so if the 
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property display requires more context than just the cor- 
respondence between its editee and displayed window re- 
gion). Editor windows, on the other hand, must be in- 
stantiated in any case-and are therefore used to maintain 
the correspondences set up by property display classes. 

There are six displays in the object editor example. The 
first five are components of ObjectEditor; each display 
one of the five properties associated with the object itself. 
The sixth (ObjectSlotsDisplay) is a component of 
SlotEditor; it iterates over all of the s1ots.j Each of these 
displays prints a single datum in the ObjectEditor- 
Window. 

The graph editor has a single specialized property dis- 
play. It displays the entire graph in the editor window. 
(Graphical displays can also be combined with other types 
of property displays in editor windows.) 

There is a large number of PropertyDisplay templates. 
For example, many property displays have a similar cup- 
tion and value format. Each of these property displays has 
a caption, typically sensitive to selection with the mouse 
(active), followed by a region that contains a value (e.g., 
the property display for the DOCUMENTATION slot in 
the object editor of Fig. 14). The Caption&Value- 
PropertyDisplay class is the common generalization. Its 
specializations provide alternative ways to display cap- 
tions and values, such as displaying captions as bitmaps. 

Menu: Impulse-86 provides a large number of built-in 
menu styles, ranging from static menus to pop-up and 
pushbutton menus. 

Menus are used to display choices to be made (choice 
menus) or operations to be invoked (command menus). 
When a selection is made in a command menu, Impulse- 
86 informs the editor with which the menu is associated. 
The responsibility for executing the selected operation lies 
with the editor (see below). Menus may be unique to a 
particular editor or shared among a collection of editors. 

Menus are implemented as specialized windows. They 
typically have a restricted format for items (e.g., rows 
and columns), and a single method for handling mouse 
button events. In principle, they could be implemented as 
windows with simple property displays. However, per- 
formance considerations on current workstations and win- 
dow systems often dictate a specialized implementation. 
Hence, analogous to the Window object, the Menu ob- 
ject is an interface to one or more menu packages asso- 
ciated with the underlying window system of the target 
machine for Impulse-86. 

Impulse-86 provides support for different menu types. 
These include: StaticMenu for menus that remain on the 
screen [e.g., the menus associated with the ObjectEditor 
(Fig. 14)]; DynamicMenu for menus that pop up in re- 
sponse to some selections, and MultipleChoiceMenu for 
menus that allow a set of choices to be made before fin- 
ishing an interaction and causing some action to occur. In 
addition, there is support for menus that contain sets of 

‘Each property display is typically responsible for one editee. However, 
a property display (indeed, any component) can be iterated over a list of 
editees. 

operations to be performed (CommandMenu), menus that 
contain a set of arguments required to complete specifi- 
cation of operations (CommandArgumentMenu), a va- 
riety of different menu styles (e.g., PushButtonMenu for 
control panel buttons, StatzDisplayMenu for large, 
scrolling status menus). 

The topmost menu in Fig. 14 is a command menu as- 
sociated with the ObjectEditor. The second menu is a 
command menu associated with the SlotEditor. The next 
two menus (Ancestry and Progeny) are command menus 
that show the immediate relatives of the editee object (and 
new interaction contexts can be invoked by selecting ob- 
jects in those menus). 

The rule editor specialization of the object editor (Fig. 
15) has two new command menus for Rule Commands 
and Clause Commands. It uses a specialized form of the 
standard slot editor command menu (SE Commands), and 
inherits the Ancestry menu. 

The separation between ObjectEditor and SlotEditor 
is used to advantage for indicating which commands are 
appropriate to a user-selected item in the editor window. 
For example, when an object-specific property has been 
selected, Impulse-86 grays over the menu of slot-related 
commands. This helps to focus the attention of the user 
on the relevant commands. 

Operations: Methods that perform the operations de- 
fined for an editor are grouped in operations objects. These 
methods are invoked by a message from the editor. 

ObjectEditorOperations knows how to execute the 
operations listed in the ObjectEditorCommandMenu; 
SlotEditorOperations knows how to execute the opera- 
tions listed in the SlotEditorCommandMenu. For ex- 
ample, when the SlotEditor receives a message that the 
user selected Rename Slot, it relays that message to 
SlotEditorOperations, which has a method that actually 
renames the slot. 

Separating operations from menus permits the same ed- 
iting operations to be invoked in a variety of ways, in- 
cluding menu selection, typein, function invocation, or 
message from a remote processor. 

In addition to the five major building blocks, there are 
a few minor building blocks. For example, Impulse-86 
provides high-level support for keyboard interaction 
through TTYInteractionWindows. 

C. Discussion 
Impulse-86 has been used to construct a wide variety of 

user interfaces. These range from simple “caption and 
value” editors (e.g., the object and rule editors described 
above), to graph editors (each with a specialized strategy 
for handling information overload). They include two-di- 
mensional iconic graphics editors (used in program de- 
sign) and data graphics editors (used in scientific data 
interpretation). See [49] for a complete discussion of Im- 
pulse-86. 

Specialized Impulse-86 interfaces typically require short 
development times. We attribute this to the particular set 
of behaviors encapsulated in Impulse-86 building blocks. 
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The designer is insulated from the details of manipulating 
bitmaps, windows, mouse interactions, typein streams, 
and menus-I/O details which traditionally require pains- 
taking attention. Attention can therefore be concentrated 
on what the customized interface should look like, what 
information it should show the user, and what commands 
the user should be able to request. 

Several features of the Impulse-86 substrate contribute 
to this ability. The building blocks are quite general, cov- 
ering a wide range of interaction styles. Implementation 
as an object-oriented system makes it easy to specialize 
and modify. A uniform, relatively fine-grain protocol is 
used throughout, together with a number of known meth- 
ods and defaults. These characteristics ease the problem 
of understanding what is in the system and what mixins 
to use as a starting point for customized interfaces. Fur- 
thermore, no distinction is made between default methods 
and default values; this simplifies declarative specializa- 
tion of the kernel. Finally, Impulse-86 contains a number 
of archetypal interfaces; modifying one of these is an ef- 
fective strategy for creating a new interface. 

Other groups are currently working on systems that 
support construction of interactive interfaces. The GUI- 
DON-WATCH system [43] demonstrates the utility of a 
user interface tuned to the operation of a particular class 
of consultation systems. The authors note that knowl- 
edge-base editors orginally intended for use by knowl- 
edge base developer/maintainer are typically inappro- 
priate interfaces for the end user. Impulse-86 offers a 
substrate that bridges the gap between the tools required 
by a developer/maintainer, by a domain specialist, and by 
an end user. Its extensibility further enables it to support 
the construction of specialized interfaces for each type of 
user. 

The SIG system [35] is much closer to Impulse-86. Built 
on top of Smalltalk- [24], it too offers an extensible 
kernel that supports generation of interactive displays. In 
the terminology of [35], SIG emphasizes the view aspect 
of interaction; it addresses the control aspect in a less 
structured manner. In contrast, we have found it useful in 
Impulse-86 to provide a considerable amount of structure 
to support the control aspect of interaction as well as the 
view aspect. We have also found it useful to provide a 
relatively fine-grained structure to support user extension. 

Another related effort is EZWin [33], an object-ori- 
ented editing system which provides three object classes 
for constructing editors. Although the two systems have 
similarities, there are several important differences. 
“EZWin systems are basically editors for graphical ob- 
jects.” [33, p. 1861 Systems constructed in Impulse-86 
are interfaces for knowledge-based systems; the interac- 
tion objects and routines are completely separate from the 
knowledge-base being edited. This separation allows the 
interface and application to be modified independently and 
supports the reuse of interfaces with different knowledge- 
based systems. 

Perhaps closest to Impulse-86 is PSBase [ 151, a proto- 
type system for modeling and constructing user inter- 

faces. Like Impulse-86, PSBase separates the interface 
from the application. It also considers the view aspect of 
interaction (called presentation), and the control aspect 
(called recognition). Ciccarelli describes the implemen- 
tation of a number of well-known text-oriented and icon- 
oriented interfaces in PSBase (e.g., the Xerox Star inter- 
face [47]). Impulse-86 and PSBase share much in spirit, 
but differ in specifics. Both systems explicitly consider 
composite interfaces and sharing of structure. Because 
Impulse-86 has been carried through to production use in 
a wide variety of applications, it provides a larger number 
of interaction styles. 

Much of the recent work on graphical programming 
systems is relevant to Impulse-86. These systems provide 
iconic interfaces for creating, editing and animating pro- 
grams. Program animation is triggered by application- 
specific events which update the display. While the inter- 
action with and appearance of these interfaces are similar 
to interfaces built with Impulse-86, the underlying struc- 
ture is quite different. First, most graphical programming 
interfaces [ 121, [ 131, [34], [40]-[42] are tightly coupled 
with their application: interaction and animation are man- 
aged by low-level calls from the editor and the interpreter. 
Impulse-86 separates the interface and application, 
thereby supporting reuse and modification. Second, only 
some of these systems [34], [40], [42] provide support for 
relationships such as composition and dependency. These 
relationships, and their explicit representation in objects, 
allow important structural features of the application (such 
as connectivity) to be maintained. The differences be- 
tween Impulse-86 and these systems stem from the at- 
tempted scope of the systems. All of these systems are 
closely tied to the domain of programming-extension and 
reuse of these interfaces is limited to this domain. Im- 
pulse-86 aspires to provide interface support for a variety 
of applications, not just programming. 

V. RELATED WORK 

The philosophy embodied in this work can be traced 
back to the MYCIN project, described fully in [14]. The 
concept of an intelligent assistant derives directly from 
TEIRESIAS [21] system. Our conception of task models 
follows from TEIRESIAS’s rule models. Its technique of 
“acquisition in context” -eliciting information by asking 
questions relevant to specific situations, rather than ask- 
ing general questions-is embodied in the assistant’s use 
of task-specific schemata to drive acquisition of domain 
knowledge. TEIRESIAS was designed to assist with the 
debugging nearly complete knowledge bases; it worked 
by guiding a domain specialist through a faulty reasoning 
trace, searching for missing and incorrect knowledge. By 
contrast, the designer’s assistant addresses knowledge ac- 
quisition techniques for all phases of KBS development. 
The EMYCIN system [36] defined the concept of a KBS 
shell; our vision of a knowledge intensive development 
environment is a descendant of this approach. 

Acquisition of task-specific inference and control 
knowledge is addressed in a number of systems. MOLE 
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[22] acquires heuristic classification knowledge in a two- 
phase process. In the first phase, an initial knowledge base 
is constructed; the domain specialist is asked to supply 
common hypotheses and evidence, and then draw asso- 
ciations between them. In the second phase, MOLE and 
the specialist interact to refine the knowledge base. MOLE 
performs static analysis of the knowledge base to discover 
ambiguities and inadequacies in the knowledge base; it 
can recommend corrections for some knowledge base de- 
ficiencies discovered by this process. The system also 
performs dynamic analysis; by examining its failures on 
known test cases, it is able to suggest knowledge base 
alterations to remedy its performance. MOLE is a self- 
contained environment; it contains an inference compo- 
nent as well, allowing it to both test its knowledge, and 
run actual diagnostic sessions. The approach to knowl- 
edge acquisition taken by the designer’s assistant differs 
from that in MOLE. The assistant begins by acquiring the 
conceptual structure of a domain, without regard for the 
type of problem solving to be performed. It is our hy- 
pothesis that the conceptual structure can serve as the ba- 
sis for a number of systems. In addition, the assistant is 
not a self-contained environment; it is a component of an 
extensible problem solving framework; it must be able to 
guide acquisition of knowledge for any number of repre- 
sentation languages and inference procedures. 

In ROGET [3], Bennett describes a prototype knowl- 
edge-based system for acquiring the conceptual struc- 
ture-descriptions of input evidence, inference steps, and 
output advice-of diagnostic expert systems. ROGET in- 
teracts with a domain specialist to acquire the structure of 
the new system, comparing the task requirements to ab- 
stract categories of requirements derived from previously 
constructed diagnostic systems. The system makes rec- 
ommendations concerning the scope of the system to be 
constructed and the specific knowledge engineering tech- 
niques to be employed. The principal similarity to the 
work described in this article is the use of abstract task 
models to focus knowledge acquisition; however, RO- 
GET is targeted only towards the initial phase of KBS 
construction. The result of a ROGET consultation is an 
initial EMYCIN knowledge base; additional terminology, 
domain-specific inference rules, and control structure must 
all be acquired within EMYCIN. 

The Knowledge-Based Software Assistant (KBSA) is a 
proposed architecture to aid “. . . the development, evo- 
lution, and maintenance of large software projects” [26]. 
Software development and maintenance under the KBSA 
paradigm is fundamentally different from current prac- 
tice; changes are made to the software specification, rather 
than to the software itself. The implementation of the 
software specification is rederived with each change. This 
is similar to the assistant’s providing a concept and rela- 
tion level interface for knowledge capture, deriving the 
computational representation of the knowledge base it- 
self. In addition, the KBSA captures design decisions re- 
garding the software project, and can act as an intelligent 

software assistant to developers, maintainers, project 
managers, and end-users. This parallels our goals for the 
KBS designer’s assistant quite closely. The KBSA and the 
designer’s assistant differ, however, in a number of im- 
portant aspects. Whereas the KBSA emphasizes capturing 
the validating design decisions, the designer’s assistant 
emphasizes helping the designer formulate the conceptual 
structure of a KBS. The KBSA creates and maintains an 
executable specijication of a software system, which it 
assumes is simpler to debug and validate than the actual 
implementation. The designer’s assistant, however, works 
with the implementation itself; in KBS development, the 
concept of a specification is informal, and often evolves 
as the KBS evolves. 

KL-ONE 11 l] is a knowledge representation framework 
based on a semantic network model. It and its successors, 
including Krypton [lo] NIKL [29], and KL-TWO [59], 
have made important contributions towards a formal the- 
ory of semantic network languages. Of particular rele- 
vance to the KBS designer’s assistant is the notion of a 
classijier, a procedure for determining the correct place 
for a description in a KL-ONE network. Stated simply, 
the classification algorithm places a new concept in the 
network such that it is “above” (is an ancestor of) all 
concepts it subsumes, and is “below” (is a descendant 
of) all concepts that subsume it. One concept subsumes 
a second concept if all instances of second would also be 
recognized as instances of the first. KL-ONE, KL-TWO, 
NIKL, and Krypton knowledge bases are constructed by 
classification. The designer’s assistant defines neither 
subsumption nor classification; however, by helping de- 
signers produce knowledge bases which encode informa- 
tion in the most general manner possible, it does offer a 
similar service. The assistant’s library of modeling cliches 
is a means by which it can detect poorly structured knowl- 
edge bases; these cliches also allow the assistant to rec- 
ommend a greater variety of improvements to knowledge 
base structure. For example, the KL-ONE classifier can 
only move concepts in a taxonomy; the assistant’s “clas- 
sifier” can in addition recommend changes in the struc- 
ture of concepts, so as to make explicit generalizations 
not properly encoded in the knowledge base. 

We expect classification to play a larger role as we ex- 
periment with larger knowledge bases. As the size of a 
knowledge base increases, it becomes increasingly diffi- 
cult to find the appropriate concepts to be specialized and 
elaborated. (This is analogous to the well-known prob- 
lems of finding and understanding in discussions of the 
software reuse [4] .) 

VI. CONCLUSION 

Starting from the widespread belief that knowledge ac- 
quisition is the central problem in knowledge-based sys- 
tem design, we have argued that a broad spectrum of 
tools-ranging from powerful representation languages to 
sophisticated editors and debuggers-is required to man- 
age this complex process. While contemporary KBS de- 
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sign environments provide many such tools, little or no 
support in the use of these tools is currently available for 
domain specialists and designers. 

Our central thesis is that it is possible to construct an 
automated assistant which actively participates in the 
knowledge acquisition process. This assistant guides de- 
signers and domain specialists in the proper selection and 
use of development environment tools, and helps formu- 
late, extend, visualize, and verify the conceptual structure 
of domain knowledge bases. The assistant is a knowl- 
edge-based system whose domain is the design of knowl- 
edge-based systems. Its domain knowledge includes 
models of various classes of knowledge-based systems 
(such as diagnostic, design, and simulation systems), as 
well as models of proper usage of both its representation 
language and development environment tools. The assis- 
tant is not limited to helping construct the conceptual 
structure of a knowledge-based system; it can also offer 
support throughout the lifetime of the system, in areas 
such as testing, validation, and knowledge base mainte- 
nance. We have partially implemented such an assistant. 

Collective experience with tools for KBS development 
has shown us that a good development environment is 
critical in helping knowledge engineers produce work- 
able, extensible, and maintainable systems. As with any 
complex system, poor design choices made during the be- 
ginning phase of knowledge base construction may prop- 
agate far into an evolving system, often necessitating sub- 
stantial redesign after the system has grown quite large. 
The knowledge base designer’s assistant can assist in early 
detection and correction of design errors, thus simplifying 
later debugging and extension of the knowledge base. 

The designer’s assistant is part of a larger vision: a 
knowledge-intensive development environment, which 
supports development and use of knowledge-based sys- 
tems from the separate perspectives of developers, do- 
main specialists, and end-users. The environment is com- 
posed of two interrelated components: a representation 
and reasoning substrate, which integrates various cate- 
gories of problem solving tools, and an interaction sub- 
strate, which consists of tools for constructing interactive 
user interfaces to knowledge-based systems. This orga- 
nization reflects our view that reasoning and interaction 
are both knowledge-based tasks; the environment pro- 
vides the “traditional” representation and reasoning sup- 
port found in all KBS shells, as well as support for pow- 
erful user interfaces-such as the designer’s assistant- 
which themselves can be knowledge-based systems. 

Our emerging knowledge-intensive development envi- 
ronment is founded upon two key technologies: Strobe, 
an object-oriented programming language, and Impulse- 
86, a user interface framework. Strobe is useful in two 
ways: as a programming paradigm, it is the “glue” which 
joins together distinct software subsystems in a uniform 
manner; as a simple representation language kernel, it 
supports the construction of computational models which 
mirror the organization of the physical world in which the 

software systems are to operate. Impulse-86 is a key com- 
ponent of the interaction substrate; it implements the low- 
level mechanics of user-interfaces-support for windows, 
menus, typein, and pointing devices-as well as provid- 
ing editors and browsers for domain knowledge bases. It 
further serves as an extensible kernel from which appli- 
cation-specific user interfaces can be constructed. 

Strobe and Impulse-86 already contribute much to con- 
trol the complexity of KBS design. These components, 
while passive, are the prerequisites for the more autono- 
mous designer’s assistant. 
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