
CS 375A Handout 1 14 September, 1981

Fact Sheet

Course Title: Artificial Intelligence
Number: Computer Science 375A
Term: Fall Term, 1981
Lecture Times: Monday, Wednesday, Friday, 9:35-10:35 am
Lecture Location: Life Sciences 2967

Instructor: Dr. Reid G. Smith
Office: Defence Research Establishment Atlantic & Killam Library 4402
Office Hours: By appointment
Telephone: DREA - 426-3100 (leave messages with Jean Faulkner)

Text: Nilsson, Nils J., Principles of Artificial Intelligence, Tioga Publishing Company, Palo Alto,
California, 1980, 476 pages.

Prerequisite: CS 270 (Programming Languages) or equivalent. [Prior knowledge of LISP will
be helpful]
Corequisite: CS 360A (Data Structures and Algorithm Analysis)

Course Purpose: This course is intended to provide an introductory overview of the field of
Artificial Intelligence, to illustrate the basic techniques in a variety of problem domains, and
to isolate current problems and topics for future research.

Homework Assignments: There will be approximately 10 homework assignments.

Grading: Grades in the course will be 65% dependent on the homework and 35% dependent
on the final exam. It is therefore imperative that you attempt each assignment and turn
something in.

http://www.rgsmithassociates.com/About.htm

CS 375A Homework Set 1 25 September, 1981

Due Date: October 5, 1981.

1) Write a LISP function, ALT, whose value is a list whose elements are alternate elements of its argument.

(ALT ‘(A B C)) = (A C)
(ALT ‘((A B) (C D))) = ((A B))

2) Write a LISP function, ATLIS, whose value is a list of the unique atoms in an S-expression.

(ATLIS ‘(A B C) = (A B C NIL)
(ATLIS ‘((A) V ((V (B) (((D))))))) = (A V B D NIL)

3) Write a LISP function, SUBSTITUTE, that substitutes atom X for atom Y in S-expression Z.

(SUBSTITUTE ‘X ‘A ‘(PLUS (TIMES A B) (QUOTIENT C (SUB1 A)))) =
 (PLUS (TIMES X B) (QUOTIENT C (SUB1 X)))

4) Write a LISP function, ALLPAIRS, that computes a list of all pairs of elements, each pair taking one
element from its first argument and one from its second argument.

(ALLPAIRS ‘(A B C) ‘(D E)) = ((A D) (A E) (B D) (B E) (C D) (C E))

Observe the ordering given in the example.

5) Write a LISP function to convert a list of English words to Pig Latin. Each English word is translated to pig
latin by the following rules:

1) If the first letter of the English word is a vowel then the Pig Latin translation is the same as the
English word.

2) Otherwise, rotate the first letter of the word to the end of the word and repeat until the first letter
becomes a vowel. Add the letters “AY” to the end of the word to complete the Pig Latin translation.

3) For the purposes of this problem, vowels are A E I O and U.
4) Assume every English word contains at least one vowel.

(PIGLATIN ‘(I LIKE LISP BETTER THAN PIG LATIN)) =
 (I IKELAY ISPLAY ETTERBAY ANTHAY IGPAY ATINLAY)

You will need the two LISP functions:

(EXPLODE ‘ABO = (A B C) (COMPRESS ‘(A B C)) = ABC

6) Write a pair of LISP functions, SUBEXP and LOCATIONS. SUBEXP gives the sub-expression at location x,
where x is a list of A’s and D’s that indicates the CAR/CDR chain to follow to reach the desired
subexpression. LOCATIONS returns a list of all locations of a given subexpression, in the same format.

(LOCATIONS ‘X ‘(PLUS X (TIMES X Y))) = ((D A) (D D A D A))
(SUBEXP ‘(D D A D A) ‘(PLUS X (TIMES X YD)))

Hint: You will find MAPCAR doubly helpful here.

CS 375A Solutions for Homework Set 1

In general, many of the function definitions on the assignments were much more complicated than
they needed to be. By deciding first on the simplest possible terminating conditions, and then
deciding how more complicated cases should be decomposed, one can usually write a simple
recursive function to do the job,

Hints about LISP programming:

1) Using the DEF function is easier than using DEFINE. Instead of
 (DEFINE ‘((FNAME (ARGLIST) ...))) use (DEF (FNAME (ARGLIST ...)).

2) There are a large number of system defined functions which can be useful. It is well worth your
while to consider the functions already available before you go ahead and write your own. For
instance, a number of students wrote the PIGLATIN function with a helping function to check for
vowels. The definition of VOWEL is trivial if one uses the system defined function MEMBER. However,
many people did not use MEMBER and wasted time writing a function using only COND which was 5 or
6 times longer than necessary.

3) When considering manipulations on a list where you want to do something with all the top level
elements, use a MAP function. Use of MAPCAR for the definitions of the ALLPAIRS, PIGLATIN and
LOCATIONS functions greatly simplifies the solution.

4) All programming assignments should be well documented with comments.

5) Finally, the format and proper indentation of your programs isimportant so that you can read and
debug programs. It also helps you get a good mark on assignments. Consider spending a few
minutes to define some useful functions for this purpose.

For example, the function PRETTY takes a list of function names as an argument and pretty prints
them all:

(DEF
 (PRETTY (FLIST)
 (MAPC FLIST (F/L FN) (TERPRI)
 (PRIN1 ‘$$$ FUNCTION $)
 (PRINT FN)
 (PPRINT (GETD FN))))))

This definition of PRETTY works only for LISP 5.0 on the Cyber. A more sophisticated version might
handle errors in the argument and make a distinction between EXPR's and FEXPR's.

(PRETTY FLIST)

FUNCTION PRETTY
(LAMBDA (FLIST)
(MAPC FLIST
 (F/L (FN) (TERPRI) (PRIN1 ‘FUNCTION) (PRINT FN) (PPRINT (GETD FN)))))

CS 375A Solutions for Homework Set 1

FUNCTION ALT
(LAMBDA (L)
(COND ((OR (NULL L) (NULL (CDR L))) L)
 (T (CONS (CAR L) (ALT (CDDR L))))))

FUNCTION ATLIS
(LAMBDA (L)
(ATLIS2 L NIL))

FUNCTION ATLIS2
(LAMBDA (L COLLECT)
(COND ((ATOM L (COND ((MEMBER L COLLECT) COLLECT) (T (CONS L COLLECT))))
 (T (ATLIS2 (CAR L) (ATLIS2 (CDR L) COLLECT))))))

FUNCTION SUBSTITUTE
(LAMBDA (PATTERN SUB DATA)
(COND ((AND (ATOM DATA) (EQ PATTERN DATA)) SUB)
 ((ATOM DATA) DATA)
 (T (CONS (SUBSTITUTE PATTERN SUB (CAR DATA))
 (SUBSTITUTE PATTERN SUB (CDR DATA))))))

FUNCTION ALLPAIRS
(LAMBDA (L1 L2)
(COND ((NULL L1) NIL)
 (T (APPEND (MAPCAR L2 (F/L (X) (CONS (CAR L1) (CONS X NIL))))
 (ALLPAIRS (CDR L1) L2)))))

FUNCTION PIGLATIN
(LAMBDA (LIST)
(MAPCAR LIST (F/L (WORD) (COMPRESS (PIGTRANS (EXPLODE WORD))))))

FUNCTION PIGTRANS
(LAMBDA (WORDLST)
(COND ((MEMBER (CAR WORDLST) '(COND ((MEMBER (CAR WORDLST) '(A E I O U))
 (APPEND (WORDLST ‘(A Y))))
 (T (PIGTRANS (APPEND (CDR WORDLST) (LIST (CAR WORDLST)))))))

FUNCTION LOCATIONS
(LAMBDA (PATTERN DATA)
(COND ((EQUAL PATTERN DATA) '(NIL))
 ((ATOM DATA) NIL)
 (T
 (APPEND (MAPCAR (LOCATIONS PATTERN (CAR DATA))
 (F/L (X) (CONS 'A X)))
 (MAPCAR (LOCATIONS PATTERN (CDR DATA))
 (F/L (X) (CONS ‘D X)))))))

FUNCTION SUBEXP
(LAMBDA (LOC DATA)
(COND ((NULL LOC) DATA)
 ((EQ (CAR LOC) 'A) (SUBEXP (CDR LOC) (CAR DATA)))
 ((EQ (CAR LOC) 'D) (SUBEXP (CDR LOC) (CDR DATA)))
 (T '(ILLEGAL DATA))))
EVAL >> NIL
FIN

GARBAGE COLLECTIONS = 0 0

18.12.01.UCLP, AA50, 0.128KLNS. CVTA036.

CS 375A Homework Set 2 5 October, 1981

Due Date: October 14, 1981.

1) Specify a global database, rules, and a termination condition for a production system to
solve the following water-jug problem:

Given a 7-liter jug filled with water, an empty 5-liter jug, and an empty 3-liter
jug, how can one obtain precisely 1 liter in the 5-liter jug? Water may poured
from one jug into another, but never out of a jug into oblivion.

Draw that part of the search graph corresponding to the moves you tried in finding a
solution.

2) Use the following set of rewrite rules to determine whether or not “The president
approves the sale of the new company.” is a grammatical sentence.

DNP VP → S
V DNP → VP
P DNP → PP
of → P
approves → V
DET NP → NP
DNP PP → DNP
A NP → NP
N → NP
new → A
president → N
company → N
sale → N
the → DET

Describe how the rules can be used to generate sentences. What is the global database
and the termination condition for such a system? Use the system to generate 5
grammatical (even if not meaningful) sentences.

3) The monkey-and-bananas problem is often used in the Al literature to demonstrate ideas
about common-sense reasoning. The problem can be stated as follows:

A monkey is in a room containing a box and a bunch of bananas. The bananas
are hanging from the ceiling out of reach of the monkey. How can the monkey
obtain the bananas. (The monkey is supposed to go to the box, push it under
the bananas, climb on top of it and grasp the bananas.)

Specify a global database, rules, and a termination condition for a production system to
solve the monkey-and-bananas problem. Show the complete search graph.

CS 375A Solutions for Homework Set 2

1. There are a number of possible representations for the data base. Let the current levels in the
jugs be represented by a state vector (JUG3 JUG5 JUG7) where the value of JUGi for i = [3,5,7] is
the number of litres of water in the corresponding jug of capacity l litres.

Notice that there are constraints on the state vector -
(JUG3 ≤ 3) ∧ (JU65 ≤ 5) ∧ (JUG7 ≤ 7). Also, (JUG3 + JUG5 + JUG7) = 7.

The initial state of the global database is the state vector (0 0 7). Termination condition for the
production system is (x 1 6-x) for 0 ≤ x ≤ 6.

Production Rules
Assume the existence of a function Size which returns the capacity of a jug; e.g., Size(JUG3) = 3.

R1) Fill-jug(Source,Dest)
 Precondition: (Dest < Size(Dest)) ∧ (Source ≥ (Size(Dest) - Dest))
 Action:
 Source := Source - (Size(Dest) - Dest)
 Dest := Size(dest)

R2) Empty-jug(Source,Dest)
 Precondition: (Dest < Size(Dest)) ∧ (Source < (Size(Dest) - Dest))
 Action:
 Dest := Dest + Source
 Source := 0

Note that a rule may be applied to any source-destination pair of jugs provided the precondition is
satisfied. Successors of a state vector should not be expanded if they have already been generated
previously.

 Search Graph

 (7 0 0)
 (4 0 3) (2 5 0)
 (0 4 3) (4 3 0) (0 5 2) (2 2 3)
 (3 4 0) (5 0 2)
(3 1 3) Goal

CS 375A Solutions for Homework Set 2

2. In order to determine whether “The president approves the sale of the new company” is a
grammatical sentence, use the rewrite rules to transform it into the symbol S. If this is possible, the
sentence is grammatical.

It is convenient to number the rewrite rules. Whenever you use a rule to transform the sentence, the
pattern on the left hand side is replaced by the symbol on the right hand side. At this point, the rule
number can be cited to show which rule was applied.

1) DNP VP → S
2) V DNP → VP
3) P DNP → PP
4) of → P
5) approves → V
6) DET NP → NP
7) DNP PP → DNP
8) A NP → NP
9) N → NP
10) new → A
11) president → N
12) company → N
13) sale → N
14) the → DET

the president approves the sale of the new company
(14) (11) (5) (14) (13) (4) (14) (10) (12)
DET N V DET N P DET A N
 (9) (9) (9)
DET NP V DET NP P DET A NP
 (8)
DET NP V DET NP P DET NP
 (6) (6) (6)
DNP V DNP P DNP
 (3)
DNP V DNP PP
 (7)
DNP V DNP
 (2)
DNP VP
 (1)
 S

The rules are used to generate sentences by running them backwards. That is, the symbol on the
right hand side is replaced by the pattern on the left hand side. The initial global database for such
a system consists of the symbol S.

CS 375A Solutions for Homework Set 2

Termination conditions is a global database which consists entirely of terminal symbols. The
terminal symbols in this case consist of [of, approves, new, president, company, sale, the]. The
following example shows a sentence generated by this method:

S
(1)
DNP VP
(6)
DET NP VP
 (2)
DET NP V DNP
 (6)
DET NP V DET NP
 (9) (9)
DET N V DET N
(14) (11)(5) (14)(13)
the president approves the sale

3. There are number of equally valid representations for problem there. Using the state vector once
more is probably the easiest, however. Let the present state be represented by the state vector
(Mpos, Mht, Bpos, Has-bananas).

 Mpos = horizontal position of the monkey (two dimensional vector)
 Mht = boolean value (True if the monkey is on the box, False otherwise)
 Bpos = horizontal position of the box (two dimensional vector)
 Has-bananas = boolean vaiue (True if the monkey has the bananas in his grasp, False otherwise)

Assume also the existence of the global variable Banana-location, which contains the horizontal
position of the bananas. If this production system was actually implemented, it is possible that a
number of changes would be required in the database when a rule action is triggered. Assume,
therefore, that there are four procedures which will handle all of these implementation details:

 Goto(loc) moves the monkey to location loc.
 Push-box(loc) pushes the box to location loc.
 Climb-box puts the monkey on top of the box.
 Grasp-bananas puts the bananas in the physical possession of monkey.

Production Rules:

R1) Go-to-box(Mpos,Bpos)
 Precondition: Mpos ≠ Bpos
 Action: Goto(Bpos)
 Mpos := Bpos

R2) Push-box-to-bananas(Mpos,Bpos)
 Precondition: (Mpos = Bpos) ∧ Bpos ≠ Banana-location)
 Action: Push-box(Banana-location)
 Mpos := Banana-location
 Bpos := Banana-location

R3) Climb-to-bananas(Mpos,Bpos,Mht)
 Precondition: (Mpos = Banana-location) ∧ (Bpos = Banana-location)
 ∧ ~(Mht)
 Action: Climb-box
 Mht := true

CS 375A Solutions for Homework Set 2

R4) Take-bananas(Mpos,Bpos,Mht,Banana)
 Precondition: (Mpos = Banana-location) ∧ (Bpos = Banana-location)
 ∧ (Mht) ∧ ~(Banana)
 Action: Grasp-bananas
 Banana = true

The.termination condition for the production system is (Has-bananas = true), or put more simply, the
condition Has-bananas.

Search Graph

Suppose we start the monkey off at position M1, the box is in position B1, and the bananas are in position
BAN, where M1 ≠ B1 ≠ BAN. The initial contents of the global database are: (M1,false,B1,false)

The search graph is:

 (M1,false,B1,false)
 (B1,false,B1,false)
 (BAN,false,BAN,false)
 (BAN,true,BAN,false)
(BAN,true,BAN,true) Goal

CS 375A Homework Set 3 14 October, 1981

Due Date: October 21, 1981.

Suppose you are in the middle of a monopoly game when you land on Polya Place, owned by
your opponent. For committing such an outrageous act, you must pay your opponent $23 in
rent. Unfortunately, you have only two $100 bills, one $10 bill, and four $1 bills, while your
opponent has one $50 dollar bill, two $20 bills, and one $1 bill. Furthermore, you are playing
by special rules so that the bank (or anyone else) can not help you make change. Thus, you
must find a way to rearrange these 11 bills so that you are $23 poorer and your opponent
is $23 richer.

1) Describe a global database, rules, and a termination condition for this problem.

2) Propose a heuristic function h that will estimate how close a state is to a goal state. Is
your h function such that A* is admissible? Does it obey the monotone restriction?

3) Using the simple GRAPH-SEARCH described in class produce a running A* program to
solve this problem. Your program should print the path to a solution in human-readable
form. Use the simple form of EXPAND that produces all successors. Make each node in
the search an atom. (Remember that GENSYM will generate new atoms as necessary.)
Maintain the necessary information on the property list of each atom you generate.

4) For fun and extra credit: Instrument your program to measure the number of nodes
expanded and the number of nodes generated at each level of the search. Try this for
more than one h function, including one for which A* is admissible and one for which it is
not. Try varying the weights on g and h.

CS 375A Solutions for Homework Set 3

1) There are many possible variations on the representation of the global database, A set of two
state vectors, called MY-BILLS and YOUR-BILLS, is adequate for the task. These vectors are of
the form (B100 B50 B20 B10 B1).

Bn represents the number of n-dollar bills held by a player. The global database consists of a set of
nodes (atoms) with these vectors stored on their property lists. Additional information, such as the
total amount held by each player, etc., can also be represented, but is not required because such
values can be quickly calculated from the state vectors.

Production Rules

 Functions - Value(BILLS) returns total sum of bills held
 Add-bill(BILLS,Bn) adds single bill to vector of bills
 Sub-bill(BILLS,Bn) removes single bill from vector of bills

 Rules -

 Give-a-bill(Bn) --Bn represents an n-dollar bill
 Precondition: Value(MY-BILLS) > 191
 MY-BILLSn > 1 -- at least one bill to give
 Action: YOUR-BILLS := Add-bill(YOUR-BILLS,Bn)
 MY-BILLS := Sub-bill(MY-BILLS,Bn)
 Take-a-bill(Bn) --Bn represents an n-dollar bill
 Precondition: Value(MY-BILLS) < 191
 YOUR-BILLSn > 1 — at least one bill to take
 Action: MY-BILLS := Add-bill(MY-BILLS,Bn)
 YOUR-BILLS := Sub-bill(YOUR-BILLS,Bn)

 Termination_condition: Value(MY-BILLS) = 214 - 23 = 191

2) The general form of an evaluation function is as follows: F(n) := (1-w)G(n) + wH(n), where F(n) is
the total estimated cost of the optimal path solution, G(n) is the actual measured cost from the start
node to the present position, and H(n) is the estimated cost from the present node to the goal node
(i.e., the node where the termination condition is satisfied). w is the weighting factor to determine
whether G(n) or H(n) has more influence on the final evaIuation value.

Almost everyone used a simple difference heuristic, something like this:
H(n) := ABS(Value(MY-BILLS) - 191).
This heuristic measures the distance to the goal by deciding how many dollars apart the present
node is from the goal node.

This is not a particularly accurate heuristic, because it fails to take into account that a single
exchange of a large denomination bill can take the next node many dollars closer to the goal. Also,
it may be necessary to increase the difference between a node and the goal state before the goal
state is finally reached.

An H(n) which approximates more closely the number of bill exchanges required to reach the goal
does not need to be complex.

One simple possibility is ABS(Sum(YOUR-BILLS) - 6) where Sum is a function which adds up all
Bn in in the state vector. For this function, the goal node ((1 1 2 0 1) (1 10 0 1 4)) has the heuristic
value H(n) := ABS(5 - 5) + ABS(6 - 6) = 0.

This takes—advantage of the fact that when we have finished, the opponent will have to hold 6
bills, and we will have to hold 5 bills.

CS 375A Solutions for Homework Set 3

There are also many other possible H(n) functions, such as an H(n) which calculates the number of
one dollar bills which have to be exchanged to reach the goal node, and then adds 1 for every
remaining difference of $50 between Value(MY-BILLS) and $191. The more ingenuity that is
applied in the construction of the heuristic function, the smaller the search is.

Admissibility of A*

An algorithm A is admissible iff the algorithm always terminates in an optimal path from starting
node s to a goal node whenever a path from s to a goal node exists.

A discussion of admissibility is found in the text pp. 76-79. Nilsson derives several important results
regarding the GRAPH-SEARCH procedure. The main point of his results is that they prove the
GRAPH-SEARCH algorithm is admissible, but only if the heuristic function H(n) satisfies the
following condition: H(n) ≤ H*(n) for all n in the set of graph nodes. (This is also the condition for an
algorithm to be A*. All A* algorithms are admissable.)

That is, your GRAPH-SEARCH is only admissible if your heuristic function is a lower bound on the
optimum cost to reach the goal node. To show you have an admissible search algorithm, it is
necessary to prove this precondition. Most did not prove this; however an answer which
demonstrated an understanding of the requirements was sufficient for almost full marks.

Also note that the function H(n) which was most popular (i.e., the difference in amount of money
from amount of money in goal state) did not satisfy this condition (although appropriate weighting
could make the algorithm effectively an admissible A*). The easiest function to write which definitely
means the search will be admissible A* is H(n) := 0. (Obviously, 0 ≤ H(n) for all n).

Regarding the requirements of the monotone restriction, most H functions did not satisfy the
monotone restriction, which states H(n1) ≤ C(n1,n2) + H(n2).

In words, this says that the heuristic estimate of the remaining cost to reach the goal is always
equal to or less than the real cost to reach a successor node plus the estimate of reaching the goal
from that successor. The heuristic function most widely used, the dollar difference from a node to
the goal, definitely fails to satisfy the monotone restriction. Most other H(n) functions also failed to
satisfy the monotone restriction.

CS 375A Homework Set 4 23 October, 1981

Due Date: October 30, 1981.

Note: Hand in Homework Set 3 at the same time.

1) Problem 3.1 in Nilsson.

2) Problem 3.3 in Nilsson.

3) In qualitative terms, discuss how a better static evaluator, a better plausible move
generator (a mechanism for heuristically ordering moves for further exploration), and a
more competent opponent affect the balance between depth and breadth of search.

CS 375A Solutions for Homework Set 4

1. Here is the graph for problem 1 (in a simple list format), where N6 corresponds to the integer "6"
in the problem.

 ((N6 6 (N3 N3)
 (N4 N2)
 (N3 3 (N2 N1)
 (N4 4 (N2 N2)
 (N3 N1)
 (N2 2 (N1 N1))
 (N1 0))

There are a number of different traces of AO*, operation that could occur as a result of different
orderings in the above graph. Here is the trace for one of them.

Partial Solution Graph:
 N6 Cost: 6
 2 Connector: => N3 N3
 2 Connector: => N4 N2

Selected Nonterminal Leaf Node: N6
Revising Cost of node: N6 -- Current Cost: 6
 New cost: 8
Partial Solution Graph:
 N6 Cost: 8
 2 Connector: => N3 N3 Marked
 2 Connector: => N4 N2
 N3 Cost: 3
 2 Connector: => N2 N1

Selected Nonterminal Leaf Node: N3
Revising Cost of node: N3 -- Current Cost: 3
 New cost: 4
Adding Parents: N6
Revising Cost of node: N6 -- Current Cost: 8
Partial Solution Graph:
 N6 Cost: 8
 2 Connector: => N3 N3
 2 Connector: => N4 N2 Marked
 N4 Cost: 4
 2 Connector: => N2 N2
 2 Connector: => N3 N1
 N2 Cost: 2
 2 Connector: => N1 N1

Selected Nonterminal Leaf Node: N4
Revising Cost of node: N4 -- Current Cost: 4
 New cost: 6
Adding Parents: N6
Revising Cost of node: N6 -- Current Cost: 8
 New cost: 10

CS 375A Solutions for Homework Set 4

Partial Solution Graph:
 N6 Cost: 10
 2 Connector: => N3 N3 Marked
 2 Connector: => N4 N2
 N3 Cost: 4
 2 Connector: => N2 N1 Marked
 N2 Cost: 2
 2 Connector: => N1 N1
 N1 Cost: 8

Selected Nonterminal Leaf Node: N2
Revising Cost of node: N2 -- Current Cost: 2
 Node Solved
Adding Parents: N3 N4
Revising Cost of node: N3 -- Current Cost: 4
 Node Solved
Adding Parents: N6
Revising Cost of node: N4 -- Current Cost: 6
 Node Solved
Revising Cost of node: N6 -- Current Cost: 18
 Node Solved
Partial Solution Graph:
 N6 Cost: 18
 2 Connector: => N3 N3 Marked
 2 Connector: => N4 N2
 N3 Cost: 4
 2 Connector: => N2 N1 Marked
 N2 Cost: 2
 2 Connector: => N1 N1 Marked
 N1 Cost: 0

(SUCCESS 10 N6 N3 N2 N1)

CS 375A Solutions for Homework Set 4

2. Here is a trace of the solution by MINIMAX with Alpha-Beta (as shown in class). General point:
For those of you who got a different optimum backed-up value using the right-to-left ordering than
was shown in Nilsson with left-to-right ordering. That doesn't make sense--does it! Naturally you
should get the same answer--the only thing that will vary is the work involved.

 Node evaluated, value -2
 Node evaluated, value 2
 Node evaluated, value -3
 Node evaluated, value 3
 Node evaluated, value -1
 Node evaluated, value -1
 Node evaluated, value 1
MINIMAX trims 1 at level 2
 Node evaluated, value 1
 Node evaluated, value 0
MINIMAX trims 1 at level 4
MINIMAX trims 1 at level 2
 Node evaluated, value 2
 Node evaluated, value 3
 Node evaluated, value -3
MINIMAX trims 1 at level 3
 Node evaluated, value 0
 Node evaluated, value -3
 Node evaluated, value 1
 Node evaluated, value 5
 Node evaluated, value 1
MINIMAX trims 1 at level 5
 Node evaluated, value -5
MINIMAX trims 1 at level 5
 Node evaluated, value 2
 Node evaluated, value 5
 Node evaluated, value 3
 Node evaluated, value -2
 Node evaluated, value 2
 Node evaluated, value 0
MINIMAX trims 1 at level 5
 Node evaluated, value 3
 Node evaluated, value 3
 Node evaluated, value -3
 Node evaluated, value 5
 Node evaluated, value 0
Backed-up value and Move Sequence: 1 (2 2 2 1 2 1)

(Note that the move sequence above also uses right-to-left ordering.)

3.

(a) If the static evaluator were perfect, it would be unnecessary to apply it beyond those
situations achievable in one move. The search would be shallow but wide.

(b) A good plausible move generator offers up the most likely move choices first. One expects
the breadth of the search can be reduced and the depth extended.

(c) A more competent opponent may mean a shift either to breadth or depth depending on the
kind of competence involved. Is the opponent competent because he never makes the
careless mistakes one would associate with not looking at the obviously available moves?
Or is he competent because he follows the likely lines of play far into deep combinations?

CS 375A Homework Set 5 30 October, 1981

Due Date: November 6, 1981.

1) Problem 4.1 in Nilsson.

2) Problem 4.6 (a,b) in Nilsson.

3) Problem 5.1 in Nilsson.

4) Problem 5.4b in Nilsson.

5) Problem 5.9 in Nilsson.

6) Formulate as predicate calculus expressions the facts given below and prove the

result requested. (Watch out, this is a tricky one.)

Every two people have a mutual friend. Everyone is either a female or a male.
There exists at least one male and one female in the world. Prove that a male
and female exist who are friends.

CS 375A Solutions for Homework Set 5

SOLUTIONS FOR ASSIGNMENT 5 CS 375A ARTIFICIAL INTELLIGENCE

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Solutions for Homework Set 5

CS 375A Homework Set 6 6 November, 1981

Due Date: November 16, 1981.

Consider the following problem: There are three cubic blocks, labeled A, B, and C, lying on a
table. The goal is to have them stacked three high with A on top, B in the middle, and C on
the bottom (supported by the table). If we define a predicate ON(x,y) to mean block x is
resting on top of block y, then the goal can be expressed as ON(A,B) ∧ ON(B,C). The only
operator which is available is place(x,y), which by definition places block x on top of block y.
Note that place is only allowed to move one block at a time.

You are to set up an appropriate representation for this problem for each of the following
problem-solving methods: state space search, problem reduction search, resolution proof,
and PLANNER-like program. For the state space search, include a state description,
operators for moving from one state to another, and start and goal states. For the problem
reduction search, describe a problem description, problem reduction operators for reducing a
problem to its constituent subproblems, the main problem or goal, and which subproblems can
be considered primitive and why. For the resolution proof, formulate as predicate calculus
expressions the facts given and the problem to be solved. Write a PLANNER-like program
which would solve the problem. Don’t worry about the exact syntax that PLANNER
requires; just follow the basics given in Bobrow and Raphael’s “New Programming Languages
for Artificial Intelligence Research.” If you want to use primitives from some other Al
language (e.g., CONNIVER, QLISP, etc.), feel free to do so. You can also make up your own
syntax, as long as you explain exactly how it is to be interpreted in terms of Al language
features.

Construct a trace of your PLANNER-like program showing the exact order of function calls
that it makes as it solves the problem. This solution should include an example of
backtracking in the case that ON(A,B) is satisfied first and then ON(B,C) cannot be
achieved. Note: You don’t have to solve the problem using the other methods; just set the
problem up so that they are ready to be used (e.g., set up the appropriate predicates for
resolution, but don’t actually convert them to clause form or carry out the resolution proof).

Compare the representations and problem-solving methodologies of the four techniques,
using the above problem of stacking three blocks to discuss concrete advantages and
disadvantages of each technique.

CS 375A Homework Set 7 20 November, 1981

Due Date: November 27, 1981. (At the movies)

1) Problem 7.4 in Nilsson. (Replacing all constants by parameters is not the answer!)

2) Problem 7.5 in Nilsson.

3) Problem 7.8 in Nilsson.

CS 375A Solutions for Homework Set 7

1) The macro-rule:

PUT(x,y)

PRECONDITIONS: ONTABLE(x), CLEAR(x), CLEAR(y), HANDEMPTY, x ≠ y
ADD LIST: ON(x,y)
DELETE LIST: ONTABLE(x), CLEAR(y)

General Procedure: (This is an approximation of the complete procedure—you weren’t expected to work
miracles.)

a) Draw the triangle table for the specific instance of the sequence of rules.

b) Generalize the triangle table: Replace every occurrence of a constant in the left-most column by a
new parameter. (Multiple occurrences of the same constant are replaced by distinct parameters.) Fill
in the rest of the table with appropriate add clauses assuming completely uninstantiated operators
(i.e., as the add clauses appear in the operator descriptions).

 This results in a table which is too general, so ...

c) Redo each operator’s precondition proof using the precondition formulas from the operator
descriptions as the theorems to be proved and the support clauses in the generalized table as
axioms. The new proofs are done in exactly the same way as the original STRIPS proofs (using the
same resolutions). This ensures that the original table is an instance of the generalized table.

CS 375A Solutions for Homework Set 7

PICKUP

Negation of Theorem: ¬ONTABLE(p4)∨¬CLEAR(p4)∨¬HANDEMPTY
Axiom: CLEAR(p1) {p1/p4}
 ¬ONTABLE(p1)∨¬HANDEMPTY
Axiom: ONTABLE(p2) {p1/p2}
 ¬HANDEMPTY
Axiom: HANDEMPTY
 NIL

 Make the substitutions in the table.

 Now consider STACK

Negation of Theorem: ¬HOLDING(p5)∨¬CLEAR(p6)
Axiom: CLEAR(p3) {p3/p6}
 ¬HOLDING(p5)
Axiom: HOLDING(p1) {p1/p5}
 NIL

 Again, make the substitutions in the table.

d) Refinement 1: (Not needed here.) Recognize cases where two parameters are produced from a single

occurrence of a constant in a single clause; if both such parameters do not appear as arguments of
operators in the plan, then they can be bound together and one substituted for the other throughout
the table without effectively inhibiting the generality of the plan. This avoids some overgeneralization
that might lead to two clauses of the form INROOM(p1,p2) and INR00M(p1,p4) in column 0 (i.e., a plan
whose preconditions allow object p1 to be in two distinct rooms at the same time.

CS 375A Solutions for Homework Set 7

e) Delete List Refinement: Deletions in the generalized table are not always the same as in the original
table. For example, if p1=p3, you must delete the clause CLEAR(p3) when you pick up the block. To
get around this problem, the generalized clause should be

p1 ≠ p3 → CLEAR (p3)

So the final table is

2) For certain operators it is convenient to be able merely to specify the form of clauses to be deleted. We

can do this with wild cards. For example, delete ABOVE(x,$) where $ is matched to anything.

In general, however, it may not be possible to explicitly name all the atoms that should appear in the
delete list. Some clauses may be derived from other clauses (e.g., ABOVE). One way to deal with the
problem is to define a set of primitive predicates (e.g., ON) and relate all other predicates to this primitive
set. In particular, require the delete list of an operator description to indicate all the atoms containing
primitive predicates that should be deleted when the operator is applied. Also require that any nonprimitive
clause in the world model have associated with it those primitive clauses on which its validity depends. (A
primitive clause is one which contains only primitive predicates.) For example, the clause ABOVE(B1,B2)
would have associated with it the clause ON(B1,B2).

By using these conventions, we can be assured that primitive clauses will be correctly deleted during
operator applications, and that the validity of nonprimitive clauses can be determined whenever they are
used in a deduction by checking to see if all the primitive clauses on which the nonprimitive clause depends
are still in the world model.

3) Monkeys and Bananas (revisited)

Initial Model:

¬ONBOX, AT(BOX,B), AT(MONKEY,A), ¬HAS-BANANAS
BANANAS hang out of reach above position C

Operators:
GOTO(u)

preconditions: ¬ONBOX
add-list: AT(MONKEY,u)
delete-list: AT(MONKEY,$)

CS 375A Solutions for Homework Set 7

PUSHBOX(v)

preconditions: ¬ONBOX, (∃x)[AT(MONKEY,x)∧AT(BOX,x)]
add-list: AT(MONKEY,v), AT(BOX,v)
delete-list: AT(MONKEY,$), AT(BOX,$)

CLIMBBOX

preconditions: ¬ONBOX, (∃x)[AT(MONKEY,x)∧AT(BOX,x)]
add-list: ONBOX
delete-list: ¬ONBOX

GRASP

preconditions: ONBOX, AT(BOX,C)
add-list: HAS-BANANAS
delete-list: ¬HAS-BANANAS

CS 375A Homework Set 8 27 November, 1981

Due Date: December 4, 1981. (In class)

1) Consider the following grammar:

S → NP VP
NP → DETERMINER NOUN
VP → VERB/TRANSITIVE NP
VP → VERB/INTRANSITIVE

Modify the grammar to allow for adjectives, adverbs, and prepositional phrases. Write either a finite
transition net or a flow chart for accepting the grammar you have defined. Using your grammar, draw
the parse tree for the sentence, “A small brown dog quickly ate the well marinated meat beside the
kitchen stove.”

2) Give a grammar for recognizing simple questions such as “Where are we?” You only need worry
about simple questions involving “where”, “who”, or “what.” Note that this can be an open-ended
problem so don’t try too much. Don’t worry about prepositional phrases or other complications unless
you feel ambitious.

3) Here are a vocabulary and grammar used in a mythical speech understanding system. The vocabulary
consists of the following set of words:

{monkeys, programs, termites, climb, eat, manipulate, search, bananas, bits, trees}

The grammar consists of the following productions:

<sentence> → <subject> <verb> <object>
<subject> → monkeys | programs | termites
<verb> → climb | eat | manipulate | search
<object> → bananas | bits | trees

Assume that for small vocabularies (≤ 25 words) the probability of recognizing a particular word
incorrectly, pe, varies linearly with the size of the vocabulary, |V|. (Note that the probability of
recognizing a particular word correctly, pc, is then just 1 - pe.) In particular, we shall assume that
the following equation holds:

pe = 0.0375(|V| - 1), 1< |V| < 25

Also assume for this problem that the lexical segmentation scheme of the speech understanding
system works perfectly, so that the only source of error lies in the word recognition process.

a) Without the use of syntax (i.e., the grammar above), what is the probability of correct sentence
recognition (all words recognized correctly) on three-word sentences?

b) Now, using the grammar, but without any semantics, what is the probability of correct sentence
recognition?

c) Now specify which sentences generated by the grammar you consider to be semantically
meaningful. (Any reasonable assumption is fine.) Discuss why the sentence recognition rate
should be better using both syntax and semantics, and make a rough estimate of the expected
probability of correct sentence recognition in this case. (Precise calculations aren’t necessary.)

CS 375A Solutions for Homework Set 8

Problem 1

a) The (context free) grammar: to handle adjectives (including describers [in this case adverbs modifying past
participles] and classifiers [in this case nouns]), adverbs, and prepositional phrases.

S → NP VP
NP → noun
NP → determiner NP1
NP1 → noun
NP1 → ADJ* noun (kleene "*" — repetition)
NP1 → ADJ* noun PP*
NP1 → noun PP*

PP → preposition NP

ADJ → adjective
ADJ → adverb verb/past-participle
ADJ → noun

VP → verb/intransitive
VP → adverb* verb/intransitive
VP → verb/intransitive adverb*
VP → verb/intransitive PP*
VP → adverb* verb/intransitive PP*
VP → verb/intransitive adverb* PP*
VP → verb/intransitive PP* adverb*
VP → verb/transitive
VP → adverb* verb/transitive
VP → verb/transitive adverb*
VP → verb/transitive NP
VP → adverb* verb/transitive NP
VP → verb/transitive adverb* NP
VP → verb/transitive NP adverb*

b) Transition net: A call to a network constitutes an implicit PUSH. Nodes are labeled with names inside.
Names of the form “q/1” are used for terminal nodes—nodes at which a POP occurs.

CS 375A Solutions for Homework Set 8

c) The parse tree for “A small brown dog quickly ate the well marinated meat beside the kitchen stove.”

CS 375A Solutions for Homework Set 8

Problem 2

A grammar for simple “what, where, who” questions, including prepositional phrases, pronouns, and auxiliary
verbs – adverbs have been omitted. The grammar will handle examples like “Who is it?”, “Who can see?”, “Who
can you see by the cliff?”, and “What time is it?”.

S → VP NP0
S → Adverb NP VP adverb → Where | what | who
S → VP

NP0 → Pronoun
NP0 → NP
NP → Noun
NP → Determiner NP1
NP1 → Noun
NP1 → ADJ* noun
NP1 → ADJ* noun PP*
NP1 → Noun PP*

PP → Preposition NP

ADJ → Adjective
ADJ → Adverb verb/past-participle
ADJ → Noun

VP → Verb/intransitive
VP → Verb/transitive NP
VP → Auxiliary verb/intransitive
VP → Auxiliary verb/transitive NP
VP → Verb/ intransitive PP*
VP → Auxiliary verb/intransitive PP*
VP → Auxiliary NP0 VP

It should be noted that in general, questions can be viewed as sentences flipped inside out with some slot in
the sentence missing. The question is then interpreted as a request to fill the slot. Thus a full purpose
meaningful grammar for questions is very complex and usually not very useful. Often, one would much prefer
to view questions as this type of sentence with a slot missing since this tends to make the semantics of the
question much clearer.

Problem 3

a) For each word,

pc= 1 - pe = 1 - 0.0375⋅(10 - 1) = 0.6625

So the probability of correctly recognizing all words in a three word sentence is,

pc3 = (pc)3 = 0.2908

b) Using syntax only,

1) The probability of correctly recognizing the subject is,

pcs = 1- 0.375⋅ (3 - 1) = 0.925

2) The probability of correctly recognizing the verb is,

CS 375A Solutions for Homework Set 8

pcv = 1 - 0.375⋅ (4 - 1) = 0.8875

3) The probability of correctly recognizing the object is,

pco = 1- 0.375⋅ (3 - 1) = 0.925

So,
pcoverall = pcs⋅ pcv⋅ pco = 0.7594

c) To consider semantics in this small system, we can define some possibly meaningful sentences:

1. monkeys climb trees
2. monkeys eat bananas
3. programs manipulate bits
4. programs search trees
5. termites climb trees
6. termites eat trees

In the first place, there are fewer valid sentences than before, so the recognition scores will be higher.
For example, once a subject has been recognized, it places constraints on the possible verb and object.
Similarly, recognition of the verb further constrains the choice of object. Because there are fewer
possibilities to consider at each decision point, the recognition probabilities increase.

There are three possible subjects, so pcs = 0.925 as before, but once a subject is chosen, there are only
two possible verbs so pcv = 1 - 0.0375⋅(2 - 1) = 0.9625. Once both subject and verb are recognized there is
only one possible object. It serves as a check word.

So,

pcoverall = pcs⋅ pcv = 0.8903

CS 375A Final Examination 1
Department of Mathematics, Statistics, and Computing Science

Faculty of Arts and Science
Dalhousie University

Computer Science 375A
Final Examination Tuesday, December 15, 1981
Dr. R. G. Smith 3:30 - 6:30

BOOKS AND NOTES ARE ALLOWED

Instructions: Answer all questions. The point value of each question corresponds roughly
with the time estimate associated with it. Think carefully through your answers before
writing—Be succinct, make specific points and back them up with clear arguments and
examples. In general, a concise, one page answer is worth more points than a rambling four
page answer.

Good Luck!

1) A* and the Traveling Salesman problem. (20 minutes)

In the graph below, a salesman must plan a trip so that he starts at city A and visits
each of the cities just once and returns to city A.

A. (5 minutes) Characterize a production system for solving the traveling salesman
problem. Specifically, describe the database and production rules, along with the
initial state and goal condition. The control strategy for this production system will
be A*.

B. (10 minutes) Illustrate the application of A* to the traveling salesman problem.
Draw the search tree corresponding to the first 4 node expansions in the search,
assuming the map shown below. Label each node in the search tree with its h
value, f value, and the step during which it is expanded. Use the following h
function to generate the search. (Note that this function is not admissible.)

)(1= ⋅ +min uh C N

Where: Cmin = the cost of the lowest cost edge leading from the current node to an
unvisited node, and Nu = the number of unvisited nodes.

CS 375A Final Examination 2

C. (5 minutes) Describe a better, admissible h function for applying A* to the traveling
salesman problem. Explain why your h is admissible.

2) Means-Ends Analysis (25 minutes)

Consider the Towers of Hanoi problem: Three disks of different sizes begin on peg A as
shown. The objective is to move all three to peg C under the following constraints: (i)
only one disk can be moved at a time, (ii) only the top disk on any given peg can be
moved, and (iii) no disk can ever be placed on top of a smaller disk.

A. (5 minutes) Specify the database and production rules for a production system to

solve the Towers of Hanoi problem. Use predicate calculus literals to specify the
database and STRIPS-style production rules.

B. (13 minutes) Illustrate a means-ends (problem reduction) approach to solving this
problem, by tracing the first several steps in the means-ends search for a solution.
Discuss any difficulties that arise. Is means-ends analysis a good strategy for
solving this problem? Is forward search a good strategy?

C. (7 minutes) Point out the advantages of using forward search and the advantages
of using means-ends analysis for certain classes of problems that you can think of.
Suggest a problem that is not discussed in our textbook or our homework sets,
which is best handled by forward search, and one which is best handled by means-
ends analysis.

3) Alpha/Beta Search of AND/OR Trees (25 minutes)

Consider the AND/OR game tree below, assuming that the root node corresponds to a
game position in which player MAX is about to move. Assume that MAX would like to find
the move which will lead to the highest-valued position three moves into the future.

A. (11 minutes) Circle all of the nodes that will not be examined by an Alpha/Beta
search of this game tree, assuming the search is from left to right.

CS 375A Final Examination 3

For B and C below, consider all search trees with exactly this structure, but where
the values 1 through 12 can be reassigned to the tip nodes (provided each of the
12 values is used exactly once).

B. (7 minutes) What is the maximum number of nodes (i.e., worst case) that will be
examined by an Alpha/Beta search for trees with exactly this structure, but with
values possibly reassigned to the tip nodes? Give an assignment of the values 1
through 12 to the tip nodes, for which this worst case pruning will result. Is your
solution unique?

C. (7 minutes) What is the minimum number of nodes (i.e., best case) that must be
examined by Alpha/Beta for a tree with this structure? Give an assignment of the
values 1 through 12 to tip nodes, for which this best case pruning will result. Is
your solution unique?

4) Predicate Calculus Theorem Proving (35 minutes)

A. (6 minutes) Make up an appropriate set of predicates, functions, and constants,
and express each of the following statements as one or more statements in first
order predicate calculus.

1) Santa lives at the North Pole.

2) Everyone who attends Dalhousie lives in Nova Scotia.

3) Santa does not attend Dalhousie.

4) Santa’s wife knows someone who attends Dalhousie.

5) People know everyone that their wife knows.

6) Everyone lives somewhere.

B. (4 minutes) Transform each of the above statements to clause form.

C. (15 minutes) Give a resolution proof that Santa knows someone who lives in Nova
Scotia.

D. (10 minutes) Statement 3 cannot be proven from statements 1 and 2. What is the
problem? Give one or more predicate calculus assertions which, together with
assertions 1 and 2 allow a proof of statement 3. (Note that you don’t have to give
the proof—just the additional assertions.) Add general assertions, rather than very
specific ones (i.e., don’t add “Santa does not attend Dalhousie.”).

5) Application Areas (15 minutes)

Choose one of the following areas that we covered in class: Natural Language
Understanding (text), Speech Understanding, Machine Vision, and Machine Learning.

1) (6 minutes) Characterize briefly the progress that has been made in this area, and
describe the main ideas/methods responsible for this progress.

2) (9 minutes) Describe the problems that you feel are the bottlenecks holding up

CS 375A Final Examination 4

progress in this area. Be as specific as possible, giving examples of abilities that
systems do not currently have, and problems for which current methods are not
well suited.

6) Al Systems and Methods (15 minutes)

1) Give a one or two sentence definition of each of the following:

1) Satisfiability
2) Validity
3) Bi-directional search
4) Semantic Network
5) Frame
6) Demon
7) Heuristic

2) For each of the following, give a one sentence description of what it does, and a
one or two sentence characterization of the main idea/method involved in how it
does it.

1) ABSTRIPS
2) AM
3) SHRDLU
4) HEARSAY II
5) Winston’s “Arch” Learning Program

7) Al terms. (10 minutes)

Match each item in column A with the one from column B that is most related to it.

A B

(1) AND/OR Trees (1) COBOL
(2) add and delete lists (2) backward reasoning
(3) consequent theorems (3) effects of rules
(4) cooperating knowledge sources (4) forward reasoning
(5) symbol-mapping problem (5) HEARSAY-II
(6) Skolem functions (6) inheritance of properties
(7) unification (7) matching
(8) set-of-support (8) problem reduction

(9) removal of existential quantifiers
(10) resolution strategy

