
 

 
Reid G. Smith. Artificial Intelligence – CS375A – Notes. 
Dalhousie University, Halifax, NS, Canada, Fall 1981. 

Can Machines Think? 

 
… how could you tell? 

 
The Turing Test 

 

 1

http://www.rgsmithassociates.com/About.htm


 

 
What is a computer? 

 
Is computation intrinsically tied up with numbers? 

 
A Symbol Processor 
 
 

 2



 

 
What is Intelligence? 

 
1) Formulate Goals and Subgoals 
2) Use Symbols and Abstractions 
3) Use Vast Amounts of Knowledge about the Environment 
4) Learn from the Environment 
5) Exhibit Self-Awareness and a Sense of Self 

 
Is Intelligence Ephemeral? 

 
You regard an action as intelligent until you understand it. In 
explaining, you explain away 
 

 3



 

 
What is Artificial Intelligence? 

 
1) The attempt to construct artifacts that exhibit behavior we call 

“intelligent behavior” when we observe it in human beings, or, 
The development of a systematic theory of intellectual 
processes, wherever they are found. 

 
2) Theoretical psychology 

 

 4



 
 

Application Areas 

Core Topics 
Heuristic Search 
Knowledge Representation 
Common-Sense Reasoning 

& Problem Solving 
Systems & Languages 

 
 

  
Game Playing Expert Systems 
Theorem Proving Automatic Programming 
Robotics Machine Vision 
Natural Language 
Systems 

Information Processing 
Psychology 

  
 
 

 5



Can Machines Think – Objections: 

 
The Theological Objection 

 
Thinking is a function of man’s immortal soul. God has given an 
immortal soul to every man and woman, but not to any other animal 
or to machines. Hence no animal or machine can think. 

 
The “Heads in the Sand” Objection 

 
The consequences of machines thinking would be too dreadful. Let 
us hope and believe that they cannot do so. 

 
The Mathematical Objection 

 
Based on Gödel’s theorem (1931) – In any sufficiently powerful 
logical system, statements can be formulated which can neither be 
proved nor disproved within the system. Therefore there are 
limitations on the powers of any particular machine, but no such 
limitations apply to the human intellect. 
 

 6



Can Machines Think – Objections: 

 
The Argument from Consciousness 

 
Not until a machine can write a sonnet of compose a concerto 
because of thoughts and emotions felt, and not by the chance fall of 
symbols, could we agree that machine equals brain – that is, not only 
write it but know that it had written it. No mechanism could feel (and 
not merely artificially signal, an easy contrivance) pleasure at its 
successes, grief when its valves fuse, be warmed by flattery, be 
made miserable by its mistakes, be charmed by sex, be angry or 
depressed when it cannot get what it wants. 

 
Arguments from Various Disabilities 

 
I grant that you can make machines do all the things you have 
mentioned but you will never be able to make a machine do X. 
(X ← be resourceful, make mistakes, fall in love … ) 

 7



Can Machines Think – Objections: 

 
Lady (Ada) Lovelace’s Objection (1842) 

 
The Analytical Engine has no pretensions to originate anything. It 
can do whatever we know how to order it to perform. 

 
The Argument from Informality of Behavior 

 
It is not possible to produce a set of rules purporting to describe what 
a man should do in every set of circumstances. Therefore men 
cannot be machines. 

 
The Argument of Super Excellence 

 
Computer composition compares miserably with that of Mozart or 
Chopin. Therefore … 
 

 8



Heuristic Search 
 

1) Transform a problem into the canonical problem of finding a 
path through a space of problem states from the initial state to 
a goal (i.e., solution) state. 

 
2) Reduce a problem to various subproblems that are also 

reduced in turn (and so on) until the ultimately resulting 
subproblems have trivial or known solutions. 

 

 

 
Problem: How can the effects of the combinatorial explosion of 
exhaustive search be lessened? 
 

… Heuristics. 

 9



Knowledge Representation 

 
How should knowledge be acquired and represented so that it can 
best be used by a computer system? 

 
Types of Knowledge 

 
objects (facts about the environment) 
 

Terminals have keyboards 
 
events 
 

The system crashed last night 
 
performance of skills 
 

I know how to type 
 
meta-knowledge 
 

I know that I understand LISP code 
 
 

 10



 
 
Survey of Representational Techniques 

 
State Vector 

 
( 2 4 6 8 3 x x x ) 

 
Logic 

 
All terminals have keyboards 
∀ x. Terminal ( x ) → HasKeyboard (x) 

 
Procedural Representation 

 
What types of terminal have 24 line screens? 
(For x in TERMINAL-TYPES collect x 

when (LINES x) = 24) 
 

Semantic Networks 
 

TERMINAL 
      │ 
      │ HAS-PART 
      │ 
KEYBOARD 

 
Production Systems 

 
IF testing for equality AND items are atoms 
THEN use EQ 

 

 11



FRAMES and UNITS 
 

Previous experience and expectations. Data structures for representing 
stereotyped objects, situations, and events, and for organizing knowledge. 

 
Slot: How what you know fits into the context created by the unit. An 
encoding of structural information.  
 
Example: 
 
Unit: ELEPHANT 

 
Generalization: MAMMAL 

 
COLOR: Gray 
TEXTURE: Wrinkled 
WEIGHT: An integer (DEFAULT 2000 Lbs) 
HEIGHT: 1-6 M 
STYLE-OF-EARS: Sleek, Floppy, ... 
 
Unit: CLYDE 

 
Generalization: ELEPHANT 

 
COLOR: Gray 
TEXTURE: Wrinkled 
WEIGHT: 2000 Lbs 
HEIGHT: 3 M 
STYLE-OF-EARS: Sleek 
 
Aspects or Fields: Different restrictions on what can fill a slot (e.g., 
datatype, allowable range of values). Advice on how to fill a slot: 
Procedural Attachment (To-Fill, If-Changed, … )  
 
Encoding Declarative Knowledge and Procedural Knowledge 
 
Generalization Hierarchy: A further encoding of structure.  

 12



FRAMES and UNITS 

 
ANIMAL 
    MAMMAL 
        ELEPHANT 
        SPERM-WHALE 
    SHARK 
 

Property Inheritance: An approach to the Symbol-Mapping Problem – Given 
it is learned that FLOSSIE is an elephant, a number of facts become 
“accessible.” How to make that happen? Antecedent theorems are 
troublesome. Which properties to assert? Consequent theorems are tricky. 
Which subgoals to pursue? 

 
How to map the canonical elephant into FLOSSIE? 

 13



 
 

Structured Object Representations 
 

Generic TERMINAL Frame 
  Lines: An Integer 
  Characters/Line: An Integer 
  Type: One of [VT100 DM2500] 
 
MY-TERMINAL Frame 
  Lines: 24 
  Characters/Line: 80 
  Type: DM2500 
 

 
 

 14



Common-Sense Reasoning 
and 

Problem Solving 
 

1) How should programs deduce facts that are implied by other 
explicitly represented facts but are not themselves explicitly 
represented? 

 
2) How should plans of actions to achieve given goals be 

generated and executed, replanning as necessary? 

 
Puzzle Solving 

 
Logic Theorist 

 
Given: 

( p ∧ p ) → p 
p → ( q ∧ p ) 
( p ∧ q ) → ( q ∧ p ) 
[ p ∧ (q ∧ r ) ] → [ q ∧ ( p ∧ r ) ] 
( p → q ) → [ ( r ∧ p ) → ( r ∧ q ) ] 

 
Prove: 
 

¬( p ∧ q ) → ¬p 
 

Reasoning Backward, Means-Ends Analysis 

 15



 
 

Early Robotics 
 

STRIPS 
 
Robot called Shakey 
Solving Problems in a Multi-Room Environment 
 

Planning 
Execution Monitoring / Replanning 
Hierarchical Planning 

 

 
 

 16



Systems and Languages 
 
How should important strategies, processing methods, and 
representations be incorporated into more powerful and useful 
programming languages? 

 
Lisp and IPL-V 

list processing 
 

QA4, QLISP, PLANNER, CONNIVER 
search, pattern-matching, contexts 
pseudo-parallel control regimes 
 (e.g., generators) 

 
INTERLISP Programming Environment 

DWIM, File Package, Programmer’s Assistant 
Spaghetti Stack, Break Package 

 
Lisp Machines 

tailored microcode, efficient list storage 
~ $70k 

 
Tools 

Timesharing 
Screen-based editors: E, EMACS, TV-EDIT 
Document Compilers: PUB, SCRIBE 
Bit-Mapped Graphics 

 17



Application Areas 
 

Game Playing 
 

Checkers (Samuel) 
Chess (CHESS 4.6 – rating: 2271 [master rating]) 
Backgammon (BKG) 
 … Man/Machine differences 

 
Expert Systems 

 
MYCIN / DENDRAL / PUFF / MOLGEN 
 Transfer of Expertise: Human → Machine 

 
MACSYMA 
 

− + =2x xy 3y 2 0   ( for x ) 
 

+∫ ( )x 2x e dx  

 
Theorem Proving 

 
Resolution – single rule of inference 
Man/Machine Systems 

 

 18



 
 

* Machine 

 
Speed 

* Man 
 

Complexity or Sophistication of 
the Information Processes available 

 19



 
 
--------PATIENT-1-------- 
1) Patient’s name: (first last) 
** FRED SMITH 
2) Sex: 
** MALE 
3) Age: 
** 55 
4) Have you been able to obtain positive 

cultures from a site at which Fred Smith 
has an infection? 

** YES 
--------INFECTION-1-------- 
5) What is the infection? 
** PRIMARY-BACTEREMIA 
6) Please give the date and approximate time 

when signs or symptoms of the primary-
bacteremia (INFECTION-1) first appeared. 

 (mo/da/yr) 
** MAY 5, 1975 
 The most recent positive culture associated 

with the primary-bacteremia (INFECTION-1) 
will be referred to as: 

--------CULTURE-1-------- 
7) From what site was the specimen for 

CULTURE-1 taken? 
** BLOOD 
8) Please give the date and time when this 

blood culture (CULTURE-1) was obtained. 
 (mo/da/yr) 
** MAY 9, 1975 
 The first significant organism from this 

blood culture (CULTURE-1) will be referred 
to as: 

--------ORGANISM-1-------- 
9) Enter the identity of ORGANISM-1: 
** UNKNOWN 
10) Is ORGANISM-1 a rod or coccus (etc.)? 

 20



 
 
** ROD 
11) The gram stain of ORGANISM-1: 
** GRAMNEG 
12) Have there been POSITIVE cultures from 

sites which are NOT associated with 
infections about which you are seeking 
advice? 

** NO 
13) Did ORGANISM-1 grow aerobically? 
** YES (.8) 
 
... 
 

My therapy recommendation will be based on the 
following probable infection(s) and potential 
causative organism(s): 
 
INFECTION-1 is PRIMARY-BACTEREMIA 
 
<Item 1> The identity of ORGANISM-1 may be 

PSEUDOMONAS-AERUGINOSA 
<Item 2> The identity of ORGANISM-1 may be 

KLEBSIELLA-PNEUMONIAE 
<Item 3> The identity of ORGANISM-1 may be E.COLI 
<Item 4> The identity of ORGANISM-1 may be 

BACTEROIDES-FRAGILIS 
<Item 5> The identity of ORGANISM-1 may be 

ENTEROBACTER 
<Item 6> The identity of ORGANISM-1 may be PROTEUS-

NON-MIRABILIS 

 21



 
 
34) Was penicillin added to this blood culture 

(CULTURE-1)? 
** WHY 

[i.e., WHY is it important to determine whether 
penicillinase was added to CULTURE-1?] 

[3.0] This will aid in determining whether 
ORGANISM-1 is a contaminant. 

 It has already been determined that 
 [3.1] the site of CULTURE-1 is blood, and 
 [3.2] the gram stain of ORGANISM-1 is grampos 
 Therefore, if 
 [3.3] penicillinase was added to this blood 

culture 
 then 
 there is weakly suggestive evidence (.4) that 

ORGANISM-1 is a contaminant 
[RULE039] 

 

 22



DENDRAL 
 

 
 

 23



Symbolic Integration 

 
 

 24



GPS: Power vs Generality 
 
Generality: 

Missionaries and Cannibals Symbolic Integration 
Towers of Hanoi Simple Theorem-Proving 
Father and Sons Monkey and Bananas 
Three Coins Puzzle Parsing Sentences 
Bridges of Königsberg Water Jug Task 
Letter Series Completion 

 
Failures: Increasing generality requires increased requirement on 
what must be given in problem statement. 

 

 

 25



 

 

 
PROBLEM:  (MAKE (ON A B)) 

 

 26



 
 

Automatic Programming 
 

HACKER 
Learns to construct simple programs in the “blocks world” 

 
PECOS 

Reachability Problem: Given a directed graph, G, and an 
initial vertex, v, find all vertices reachable from v by 
following zero or more arcs. 

 27



 
 

Robotics 
 

Water Pump Assembly 
visual and tactile sensing 

Hinge Assembly 
two arms 

Industrial Automation 
AL programming language 

 
Machine Vision 

 
Raw Images to Descriptions 

Matching 3-D models to 2-D visual data 
Blocks World (Roberts, Guzman, Waltz) 

(illumination effects, shadows, occlusion) 
COPY 

uses a visual input device to look at a scene consisting of a 
structure of blocks. Then uses a robot arm to copy the 
structure from disarranged blocks. 

Shape Description 

 
Natural Language Systems 

 
Machine Translation 
Winograd (1972) 
Shank 

use of semantic primitives and scripts 
Smart Database Systems 
 
HEARSAY-II and HARPY (1000 words) 

(commercial – 99% accuracy on 120 words) 

 28



 
 

 

 29



 
 

Information Processing Psychology 
 

Concepts and vocabulary for useful theories of human behavior 
 

EPAM 
verbal learning 

 
Newell and Simon 

human problem solving 

 30



LISP Basics 
 
Data Objects (simple version) 

 
 
Most Lisp systems have other datatypes (e.g., strings, arrays, …). 

 
Examples 
 
THISISANATOM    T    NIL 

 
1.5    7777Q 

 
(A B C)    ( ) = NIL 

 
((THIS IS AN EMBEDDED LIST) IN A LARGER LIST) 

 
(S-expression 
    (Atom 
        (Number 
            (Fixed-point Floating-point)) 
        (Symbol)) 
    (List)) 

 31



Evaluation 
 
Top Level of Lisp 
 

WHILE TRUE DO 
  BEGIN “top level” 
    Read 
    Eval 
    Print 
  END “top level” 

 
PROCEDURE Eval 
  BEGIN “eval” 
    IF atom THEN look up value 
    ELSE IF list THEN 
      BEGIN “apply” 
        Eval all list elements but  
          the first and collect list 
          of values 
        Apply function definition of 
          first element to resulting 
          list of values and compute 
          value 
      END “apply” 
    Return value 
  END “eval” 

 32



Atom Values 
 

1) An Atom can have any S-expression as its value, or have no 
value at all (be unbound – NOBIND). 

 
2) Some Atoms are defined to always have a value. 

 
Examples 
 

Value-of-T = T 
Value-of-NIL = NIL always 
Value-of-1 = 1 
Value-of-3.14 = 3.14 

 
Value-of-TERMINAL-TYPES = (DM2500 VT100) 

 

 33



Stopping Evaluation 
 
If you type X at the top level of Lisp, 
it will respond with: value-of-X. 

 
Suppose you want to refer to X itself? 

 
Precede X with ’ (quote). 

 
Thus, if you type ’X to the top level of Lisp, 
it will respond with: X. 

 
Lisp distinguishes between the name of an Atom and its value. 

 34



 
 
Notes 
 

1) Every function returns a value and may have side effects 
(e.g., setting the value of an atom, printing something, … ). 

 
2) Eval doesn’t always evaluate the remaining elements of the 

list before applying the function definition of the first element. 

 35



Setting Values 
 
SETQQ SETQ SET 
 Effect 

(SETQQ X Y) Value-of-X ← Y 

(SETQ X Y) Value-of-X ← Value-of-Y 

(SET X Y) Value-of-[ ? ] ← Value-of-Y 

Example 
 

(SETQQ COMPUTER DEC-20) 
Value-of-COMPUTER = ? 
Value-of-DEC-20 = ? 

 
(SETQQ LOAD-AVERAGE 7.5) 

Value-of-LOAD-AVERAGE = ? 
 

(SETQ DEC-20 LOAD-AVERAGE) 
Value-of-DEC-20 = ? 
Value-of-COMPUTER = ? 

 
(SETQ LOAD-AVERAGE 6.0) 

Value-of-LOAD-AVERAGE = ? 
Value-of-DEC-20 = ? 

 
(SET COMPUTER LOAD-AVERAGE) 

Value-of-COMPUTER = ? 
Value-of-DEC-20 = ? 

 
(SET DEC-20 7.5) (SET ‘DEC-20 7.5) 

 
(SETQQ ‘COMPUTER DEC-20) 

 36



Taking Lists Apart – 1 
 
CAR returns the first element of a list. 
 

Examples 
 

(CAR ‘(A B C) = A 
 

(CAR ‘((A B) C D E) = (A B) 
 

(CAR X) = ? 
 

(SETQQ X (A (B C))) 
 

(CAR X) = A 

 
CDR returns a list containing all but the first element. 
 

Examples 
 

(CDR ‘(A B C) = (B C) 
 

(CDR ‘((A B) C D E) = (C D E) 
 

(CDR X) = ((B C)) 

 
CAR and CDR have no side effects – just values. 
 
The non-mnemonic names are carryovers (sigh!) from the original 
IBM 704 implementation: Contents of Address or Decrement 
Register. 

 37



Taking Lists Apart – 2 
 
CDR and CDR can be composed for convenience. 
 

(CAR (CDR X)) → (CADR X) 
 

(CDR (CAR X)) → (CDAR X) 
 

(CAR (CDR (CDR X))) → (CADDR X) 
 

Examples 
 

(CAAR ‘((A B) C D)) =  
 (CAR (CAR ‘((A B) C D))) = A 

 
(CADR ‘(A (B C) D)) = (B C) 

 
(CDAR ‘((A B) C D)) = (B) 

 
(CDDR ‘(A B C)) = (C) 

 
All functions of the form C----R are defined as above (normally up to 
4 in length – 8 for CDC). 
 
Discrepancies: (CAR NIL) and (CDR NIL) are often defined as 
NIL. 
 

 38



Putting Them Back Together 
 
CONS takes a list and inserts a new element. (CONS is a mnemonic 
for Constructor. 
 

Examples 
 

(CONS ‘A ‘(B C)) = (A B C) 
 

(CONS ‘(A B) ‘(C D E)) = ((A B) C D E) 
 

(CONS ‘A NIL) = (A) 
 
CONS has a side effect as well as a value. It makes a new list. 

 39



CAR – CDR – CONS Summary 
 

 

 
(CONS (CAR X) (CDR X)) 

 40



List Storage 
 
Lists are stored internally as a series of two-part cells, called CONS 
cells. Each cell contains two pointers – a CAR pointer and a CDR 
pointer. 

 
Examples 
 

(A B C) 

 
 

((A B) C D) 

 

 41



CONS Revisited 
 

Lisp maintains a list of spare memory cells for its own use. This list is called 
the Free Storage List. CONS operates by removing the first cell on the Free 
Storage List and by depositing new pointers into this first cell. 

 
Example 
 
(SETQ Y ‘(B C)) 

 
 
(SETQ Y (CONS ‘A Y)) 

 
 

 42



Dotted Pairs 
 
CONS doesn’t really need a list as its second argument. 

 
Example 
 

(CONS ‘A ‘B) (CONS ‘A ‘(B)) 

 

 
This is called a Dotted Pair. 
 

(CONS ‘A ‘B) (A . B) 
 
Dotted pairs are useful for conserving memory if it is really tight since 
(A . B) takes one memory cell less than (A B). For our purposes, 
they can be ignored. 
 

 43



Garbage Collection 
 
Consider this sequence: 
 

(SETQ Y (CONS ‘A (B C))) 
 

(SETQ Y (CONS ‘X (Y Z))) 
 
After the first SETQ, the value of Y is? 
 
After the second SETQ, the value of Y is? 
 
What happened to (A B C)? 
 
It is no longer accessible – the cells that it uses are wasted to the 
rest of the system. 

 
Garbage Collection is the process by which inaccessible cells are 
returned to the Free Storage List. It is often done in two phases: a 
mark phase and a sweep phase. In the first phase, the garbage 
collector runs through memory and marks all accessible cells. In  
the second phase, the collector runs through memory again and 
adds all inaccessible cells to the Free Storage List. 

 44



Testing for Equality 
 
EQUAL takes two arguments and returns T if they are the same. 
 

(EQUAL ‘Y ‘Y) = T 
 

(EQUAL ‘(A B C) ‘(A B C)) = T 
 

(EQUAL ‘(A B C) ‘((A B C))) = NIL 

 
EQ takes two arguments and returns T if they are the same atom. 
However, if the arguments are lists, then EQ returns T if an only if 
they are represented by exactly the same memory structure. 
 

(EQ ‘Y ‘Y) = T 
 

(SETQ X ‘(A B C)) 
 

(SETQ Y ‘(A B C)) 
 

(EQ X Y) = NIL but (EQUAL X Y) = T 
 

(SETQ YY Y) 
 

(EQ YY Y) = T (EQUAL YY Y) = T 
 
Why use EQ? A matter of efficiency. It takes longer to see if a 
structure is a copy than to see if it is exactly the same. Beginners are 
advised to avoid EQ. 

 45



Some Useful Functions 
 
LENGTH returns the number of elements in a list. 
 

(LENGTH ‘(A B C)) = 3 
 

(LENGTH ‘((A B) C (D E ((F))))) = ? 

 
LIST makes a list out of its arguments. 
 

(LIST ‘A ‘B ‘C) = (A B C) 
 

(LIST ‘(A B) ‘(C D)) = ((A B) (C D)) 

 
APPEND strings together the elements of all lists supplied as 
arguments. 
 

(APPEND ‘(A) ‘(B C)) = (A B C) 
 

(APPEND ‘(A (B)) ‘(C D)) = (A (B) C D) 
 

(APPEND ‘(A) ‘() ‘(B) ‘()) = (A B) 
 
APPEND actually copies the first list and attaches the second list to 
the copy. (Generalize this to n arguments.) 

 
REVERSE reverses the order of the elements of a list. 
 

(REVERSE ‘(A B C)) = (C B A) 
 

(REVERSE ‘((A B) ‘(C D))) = ((C D) (A B)) 

 46



Predicates 
 
A predicate is a function that returns T or NIL, where T and NIL 
correspond to logical values of true and false. (Predicates are often 
implemented so that they return NIL if false, but instead of T if true, 
some other useful value.) 

 
ATOM returns T if its argument is an atom. 
 

(ATOM ‘X) = T 
 

(ATOM 6.5) = T 
 

(ATOM ‘(A B C)) = NIL 

 
NULL returns T if its argument is the empty list. 
 

(NULL ‘()) = (NULL NIL) = T 
 

(NULL T) = NIL 

 
MEMBER tests to see if its first argument is an element of its second 
argument (a list). If true, MEMBER returns the fragment of the list 
that begins with the first argument. 
 

(MEMBER ‘A ‘(A B C)) = (A B C) 
 

(MEMBER ‘B ‘(A B C)) = (B C) 
 

(MEMBER ‘Y ‘(A B C)) = NIL 
 

(MEMBER ‘(A (B)) ‘(C (A (B)) G)) = ((A (B)) G) 

 47



Arithmetic 
 
NUMBERP returns NIL if its argument is not a number. Otherwise it 
returns the number. 
 
(NUMBERP 0) = 0  (NUMBERP -6.5) = -6.5) 

 
(NUMBERP ‘Y) = NIL 

 
ZEROP returns T if its argument is 0. 
 
LESSP returns T if its first argument is less than its second 
argument. 
 
GREATERP returns T if its first argument is greater than its second 
argument. 
 
(GREATERP 7.3 6.1) = T    (LESSP 7.3 6.1 = NIL 

 
PLUS adds its arguments together. 
 
TIMES multiplies its arguments together. 
 
DIFFERENCE subtracts its second argument from its first argument. 
 
QUOTIENT divides its first argument by its second argument. 
 
ADD1 adds 1 to its argument. SUB1 subtracts 1 from its argument. 
 
(PLUS 1 2 3 -4 5) = 7     (TIMES 1 2 3 -4 5) = -120 
 
(DIFFERENCE 1 3) = -2     (QUOTIENT 5.0 2.5) = 2.0 
 
(QUOTIENT 1 2) = 0    (ADD1 2) = 3    (SUB1 1) = 0 

 48



List-Altering Functions 
 
RPLACA replaces the CAR part of a CONS cell with a new pointer. 
 
RPLACD replaces the CDR part of a CONS cell with a new pointer. 
 
NCONC is like APPEND, but it makes no copies. 
 
Examples 
 

(SETQ Y ‘(A B C) 
 

(RPLACA Y ‘F) 

 
 

(RPLACD Y ‘(D E)) Y = ? 
 

(SETQ X ‘(A B C)) (SETQ Y ‘(D E F)) 
 

(SETQ YY ‘(APPEND X Y)) YY = ?  X = ?  Y = ? 
 

(SETQ YY ‘(NCONC X Y)) YY = ?  X = ?  Y = ? 

 49



COND 
 
COND is the LISP conditional. 
 

(COND (<test 1> <form> <form> ... <form 1>) 
      (<test 2> <form> <form> ... <form 2>) 
......(<test 3> <form> <form> ... <form 3>) 
      . 
      . 
      . 
      (<test n> <form> <form> ... <form n>)) 

 
Each list is called a clause. COND searches through the clauses 
evaluating only the first element of each until one is found whose 
value is non-NIL. Then everything in the successful clause is 
evaluated and the last thing evaluated is returned as the value of  
the COND. (The intervening forms are therefore evaluated only for 
their side effects.) If no successful clause is found, the COND returns 
NIL. If the successful clause consists of only one element, then the 
value of that element is returned.  
 
Example 
 

(COND ((LESSP X Y) Y) 
      (T X)) 

 

 50



SELECTQ 
 
SELECTQ is a useful form of CASE function. 
 
(SELECTQ PATT (<patt 1> <form> <form> ... <form 1>) 
              (<patt 2> <form> <form> ... <form 2>) 
              . 
              . 
              . 
              (<patt n> <form> <form> ... <form n>) 
              <default>) 

 51



AND / OR 
 
AND returns T if all of its arguments have non-NIL values.  
Evaluation of the arguments proceeds left-to-right and stops with the 
first argument to have value NIL. 
 
OR returns T if at least one of its arguments has a non-NIL value. 
Evaluation of the arguments proceeds left-to-right and stops with the 
first argument to have a non-NIL value. 
 
Example 
 

(AND NEEDTODOTHIS (SETQ X (CAR Y))) 
 

(OR ALREADYDIDTHIS (SETQ X (CAR Y))) 
 

 52



Defining Functions 
 

(DEF (<function-name> <argument list> 
      <form 1> <form 2> ... <form n>)) 

 
Example 
 

(DEF (AUGMENT (ITEM BAG) 
         (COND ((MEMBER ITEM BAG) BAG) 
               (T (CONS ITEM BAG))))) 

 
(DEFINEQ (AUGMENT (LAMBDA (ITEM BAG) 
                    (COND ((MEMBER ITEM BAG) BAG) 
                          (T (CONS ITEM BAG))))) 

 53



Variable Binding 
 
Variables can be bound or free. 

 
A bound variable, with respect to a function, is an atom that  
appears in the function’s parameter list. 
 
A free variable, with respect to a function, is an atom that does  
not appear in the function’s parameter list. 
 
It makes no sense to speak of a variable as bound or free unless we 
also specify with respect to what function the variable is bound or 
free. 
 
Bound variable values must be saved, so that they may be restored. 
If a bound variable is also used as a free variable, its value is the 
current one, not any that may have been saved. 
 
Example 
 

(DEF (INCREMENT (PARAMETER) 
         (SETQ PARAMETER (PLUS PARAMETER FREE)) 
         (SETQ OUTPUT PARAMETER))) 

 
(SETQ PARAMETER 15) (SETQ FREE 10) 

 
(SETQ OUTPUT 10) (SETQ ARGUMENT 10) 

 
(INCREMENT ARGUMENT) = ? 

 
OUTPUT = ? PARAMETER = ? ARGUMENT = ? 

 

 54



Variable Binding 
 
Lisp is neither Call-by-Reference nor Call-by-Value. 

 
When the argument to a function is an atom, the function’s 
parameter is bound to the value of the atomic argument. There is no 
other choice. 
 
Since there is no copying involved, it sounds like call-by-reference. 
Except … the value of the argument is not usually altered by 
changes to the value of the parameter. It sounds like call-by-value. 
Except … destructive functions like RPLACA can change the value 
of the argument when they are used on the parameter. 
 
Conclusion: What Lisp does corresponds most closely to call-by-
reference, but for most purposes it can be thought of as using call-
by-value. The only time is makes a difference is when list structure 
altering functions are used. 

 
Free-variable values are determined dynamically, not lexically. 
 
Evaluation Environment: The environment (i.e., collection of 
bindings) in force when the function requiring the free-variable values 
is evaluated (dynamic scoping). 
 
Definition Environment: The environment in force when the function 
requiring the free-variable values is defined (lexical scoping). 
 

 55



Lambda Definitions 
 
LAMBDA defines anonymous functions. 
 
Functions are represented internally as LAMBDA expressions. 

 
Example 
 

(DEF (AUGMENT (ITEM BAG) 
         (COND ((MEMBER ITEM BAG) BAG) 
               (T (CONS ITEM BAG))))) 

 
results in the function definition. 

 
AUGMENT: 
    (LAMBDA (ITEM BAG) 
            (COND ((MEMBER ITEM BAG) BAG) 
                  (T (CONS ITEM BAG)))) 

 
We will see that it is sometimes appropriate to define functions that 
do not have names – typically for functions that are needed in a 
particular situation but aren’t generally useful – so we don’t clog the 
system with extra names. 
 

 56



Recursion 
 
Example 
 

(MEMBER 
  (LAMBDA (ITEM S) 
    (COND 
      ((NULL S) NIL) 
      ((EQUAL ITEM (CAR S)) S) 
      (T (MEMBER ITEM (CDR S)))))) 

 
(MEMBER ‘C ‘(A B C)) 

 
MEMBER: ITEM = C    S = (A B C) 
   MEMBER: ITEM = C    S = (B C) 
      MEMBER: ITEM = C    S = (C) 
      MEMBER = (C) 
   MEMBER = (C) 
MEMBER = (C) 

 
A function is tail recursive if values are passed upward without 
alteration as the recursion unwinds. 
 

 57



Recursion 
 
Example 
 

(OCC 
  (LAMBDA (AT S) 
    (COND 
      ((ATOM S) (EQ AT S)) 
      (T (OR (OCC AT (CAR S)) 
             (OCC AT (CDR S))))))) 

 
(OCC ‘A ‘(P (G A))) 

 
OCC: AT = A    S = (P (G A)) 
   OCC: AT = A    S = P 
   OCC = NIL 
   OCC: AT = A    S = ((G A)) 
      OCC: AT = A    S = (G A) 
         OCC: AT = A    S = G 
         OCC = NIL 
         OCC: AT = A    S = (A) 
            OCC: AT = A    S = A 
            OCC = T 
         OCC = T 
      OCC = T 
   OCC = T 
OCC = T 
 

 58



Recursion 
 
Example 
 
(EQUAL 
  (LAMBDA (X Y) 
    (COND 
      ((ATOM X) (EQ X Y)) 
      ((ATOM Y) NIL) 
      (T (AND (EQUAL (CAR X) (CAR Y)) 
              (EQUAL (CDR X) (CDR Y))))))) 
 
(EQUAL ‘(A B C) ‘(A B C)) 
 
EQUAL: X = (A B C)    Y = (A B C) 
   EQUAL: X = A    Y = A 
   EQUAL = T 
   EQUAL: X = (B C)    Y = (B C) 
      EQUAL: X = B    Y = B 
      EQUAL = T 
      EQUAL: X = (C)    Y = (C) 
         EQUAL: X = C    Y = C 
         EQUAL = T 
         EQUAL: X = NIL    Y = NIL 
         EQUAL = T 
      EQUAL = T 
   EQUAL = T 
EQUAL = T 

 

 59



Recursion 
 
Example 
 
(POWER 
  (LAMBDA (M N) 
    (COND 
      ((ZEROP N) 1) 
      (T (TIMES M (POWER M (SUB1 N))))))) 
 
(POWER 2 3) 
 
POWER: M = 2    N = 3 
   POWER: M = 2    N = 2 
      POWER: M = 2    N = 1 
         POWER: M = 2    N = 0 
         POWER = 1 
      POWER = 2 
   POWER = 4 
POWER = 8 
 

 60



Writing Recursive Functions 
 
To find the value for an arbitrary argument, ask for what simpler 
arguments the value of the function must be known. 
 

1) Determine trivial argument values and termination conditions. 
 

2) Determine the method of decomposition for an arbitrary argument. 
 

3) Determine the method for constructing the result. 

 
Recursion Schemata 

 
1) List Recursion: The value of the function is immediate for the 

argument NIL. Otherwise, it depends only on the value for the 
CDR of the argument (e.g., MEMBER). 

 
2) S-expression Recursion: The value of the function is 

immediate for atomic values of the argument. Otherwise, it 
depends on the values for the CAR and the CDR of the argument 
(e.g., EQUAL). 

 
3) Other Structural Recursions: When a list is used to represent 

an algebraic expression, functions of this expression often have a 
recursive form closely related to its inductive definition (e.g., 
POWER). 

 

 61



Using Auxiliary Functions 
 
For some problems, an auxiliary function with an extra argument can 
be used to accumulate a partial result. This is often simpler than 
trying to solve the problem with a single function. 
 
Example 
 
(REVERSE 
  (LAMBDA (X) (REV X NIL))) 
 
(REV 
  (LAMBDA (X Y) 
    (COND 
      ((NULL X) Y) 
      (T (REV (CDR X) (CONS (CAR X) Y)))))) 
 
(REVERSE ‘(A B C)) 
 
REVERSE: X = (A B C) 
   REV: X = (A B C)    Y = NIL 
      REV: X = (B C)    Y = (A) 
         REV: X = (C)    Y = (B A) 
            REV: X = NIL    Y = (C B A) 
            REV = (C B A) 
         REV = (C B A) 
      REV = (C B A) 
   REV = (C B A) 
REVERSE = (C B A) 
 
Some Lisp implementations allow you to pad functions with extra 
arguments to obviate the need for auxiliary functions. 
 

 62



Iteration 
 
PROG creates new variables and provides a way to write functions 
that iterate. 
 
Example 
 
(POWER 
  (LAMBDA (M N) 
    (PROG (RESULT EXPONENT) 
          (SETQ RESULT 1) 
          (SETQ EXPONENT N) 
     LOOP (COND 
            ((ZEROP EXPONENT) (RETURN RESULT))) 
          (SETQ RESULT (TIMES M RESULT)) 
          (SETQ EXPONENT (SUB1 EXPONENT)) 
          (GO LOOP)))) 
 
The first position after PROG is occupied by a list of parameters that 
are bound (to NIL) on entering the PROG and restored to old values 
on exit. 
 
The value of a PROG is the value of the RETURN that stops it. A 
PROG that drops off the end has a NIL value. 
 
Please don’t use PROG to write FORTRAN code in Lisp! 
 

 63



MAPCAR: List Iteration 
 
A pattern that occurs over and over in writing Lisp functions is the 
following list recursion. 
 
(fLIST 
  (LAMBDA (L) 
    (COND 
      ((NULL L) NIL) 
      (T (CONS (f (CAR L)) 
               (fLIST (CDR L)))))) 
 
Example 
 
(DROP 
  (LAMBDA (L) 
    (COND 
      ((NULL L) NIL) 
      (T (CONS (LIST (CAR L)) 
               (DROP (CDR L)))))) 
 
(DROP ‘(A B C)) 
 
DROP: L = (A B C) 
   DROP: L = (B C) 
      DROP: L = (C) 
         DROP: L = NIL 
         DROP = NIL 
      DROP = ((C)) 
   DROP = ((B) (C)) 
DROP = ((A) (B) (C)) 

 
Lisp allows functional arguments to be passed. This enables us to 
simplify such recursions using the function MAPCAR. 

 64



MAPCAR: List Iteration 
 
(MAPCAR 
  (LAMBDA (L F) 
    (COND 
      ((NULL L) NIL) 
      (T (CONS (F (CAR L)) 
               (MAPCAR (CDR L) F)))))) 
  
Example 
 
(DROP 
  (LAMBDA (L) 
    (MAPCAR L (FUNCTION LIST)))) 
 
(DROP ‘(A B C)) 
 
DROP: L = (A B C) 
   MAPCAR: L = (A B C)    F = LIST 
   MAPCAR = ((A) (B) (C)) 
DROP = ((A) (B) (C)) 
 

DROP has the following iterative translation 
 
(DROP 
  (LAMBDA (L) 
    (for X in L collect (LIST X)))) 

 65



MAPCAR and APPLY 
 
APPLY applies a function to a list of arguments. (It is the function 
used by EVAL.) MAPCAR and APPLY make an effective 
combination. 
 
Consider the following: 
 
(ATOMS 
  (LAMBDA (S) 
    (COND 
      ((NULL S) 0) 
      ((ATOM S) 1) 
      (T (PLUS (ATOMS (CAR S)) 
               (ATOMS (CDR S))))))) 
 

 66



MAPCAR and APPLY 
 
(ATOMS ‘(TIMES X (SQRT 4))) 
  
ATOMS: S = (TIMES X (SQRT 4)) 
   ATOMS: S = TIMES 
   ATOMS = 1 
   ATOMS: S = (X (SQRT 4)) 
      ATOMS: S = X 
      ATOMS = 1 
      ATOMS: S = ((SQRT 4)) 
         ATOMS: S = (SQRT 4) 
            ATOMS: S = SQRT 
            ATOMS = 1 
            ATOMS: S = (4) 
               ATOMS: S = 4 
               ATOMS = 1 
               ATOMS: S = NIL 
               ATOMS = 0 
               PLUS: 1 0 
               PLUS = 1 
            ATOMS = 1 
            PLUS: 1 1 
            PLUS = 2 
         ATOMS = 2 
         ATOMS: S = NIL 
         ATOMS = 0 
         PLUS: 2 0 
         PLUS = 2 
      ATOMS = 2 
      PLUS: 1 2 
      PLUS = 3 
   ATOMS = 3 
   PLUS: 1 3 
   PLUS = 4 
ATOMS = 4 

 67



MAPCAR and APPLY 
 
Rewrite ATOMS. 
 
(ATOMS 
  (LAMBDA (S) 
    (COND 
      ((NULL S) 0) 
      ((ATOM S) 1) 
      (T (APPLY (FUNCTION PLUS) 
                (MAPCAR S (FUNCTION ATOMS))))))) 
 
(ATOMS ‘(TIMES X (SQRT 4))) 
 
ATOMS: S = (TIMES X (SQRT 4)) 
   MAPCAR: L = (TIMES X (SQRT 4))    F = ATOMS 
      ATOMS: S = TIMES 
      ATOMS = 1 
      ATOMS: S = X 
      ATOMS = 1 
      ATOMS: S = (SQRT 4) 
         MAPCAR: L = (SQRT 4)        F = ATOMS 
            ATOMS: S = SQRT 
            ATOMS = 1 
            ATOMS: S = 4 
            ATOMS = 1 
         MAPCAR = (1 1) 
         PLUS: 1 1 
         PLUS = 2 
      ATOMS = 2 
   MAPCAR = (1 1 2) 
   PLUS: 1 1 2 
   PLUS = 4 
ATOMS = 4 
 
Unfortunately, some Lisp implementations don’t allow you to APPLY 
functions that have an indefinite number of arguments (like PLUS). 

 68



MAPCAR revisited 
 
In some Lisp implementations, MAPCAR must be written like this 
(e.g., INTERLISP). 
 
(MAPCAR 
  (LAMBDA (L F) 
    (COND 
      ((NULL L) NIL) 
      (T (CONS (APPLY F (LIST (CAR L))) 
               (MAPCAR (CDR L) F)))))) 
 

 69



Atom Properties and Association Lists 
 
Atoms can have any number of properties as well as a value. 
 
PUT stores a property and value on the property list of an atom. 
 
GET retrieves a property value from the property list of an atom. 
 
Examples 
 

(PUT ‘PHEASANT ‘IS-A ‘BIRD) 
 

(GET ‘PHEASANT ‘IS-A) 

 
An Association List (A-list) is a list of pairs. 
 
Example 
 
(SETQ STATUS  
    ‘((TEMPERATURE 103) (PRESSURE 120 60) (PULSE 72))) 
 
ASSOC (SASSOC for CYBER) searches its second argument (an a-list) 
for a pair whose CAR is equal to its first argument (the key). It returns the 
pair so discovered, else NIL. 
 
Examples 
 
(ASSOC ‘PRESSURE STATUS) = (PRESSURE 120 60) 
 
(ASSOC ‘COMPLAINTS STATUS) = NIL 

 70



Production Systems 
 

1. Global Database 
 

2. Set of Production Rules 
Precondition → Action 

 
3. Control System 

Rule Application 
Termination Condition 

 
The Representation Problem: How to transform a problem statement 
into the above three components. 

 
Example 
 
Missionaries and Cannibals Problem: You have N missionaries and 
N cannibals on the left bank of a river. You also have a boat that will 
carry (N + 1)/2 persons. Your problem is to transport all missionaries 
and cannibals to the right bank of the river in such a way that there 
are never more cannibals than missionaries in any one spot. 
 
Consider N = 3, so the boat carries 2 persons. 

 
 States Moves Goal 

 
 Problem Space 

 71



Production Systems 
 
State Vector Representation: 
 
 (ML      CL      B) 
 
ML = Number of missionaries on left bank 
 
CL = Number of cannibals on left bank 
 
B = Boat Position (L = left, R = right) 

 
Initial State: (3      3      L) 
 
Goal State: (0      0      R) 
 
N = Number of missionaries and number of cannibals 

 
Production Rules 
 
Move Left-to-Right (m,c) 
 Precondition: 
 B = L 
 m ≥ c 
 (ML − m ≥ CL − c) ∨ (ML − m = 0) 
 (N − (ML − m) ≥ N − (CL − c)) ∨ ((N − ML − m) = 0) 
 Action: 
 B ← R 
 ML ← ML − m 
 CL ← CL − c 

 72



Production Systems 
 
Control: A nondeterministic algorithm 

 
PROCEDURE Production 
  BEGIN “production” 
    DATA ← Initial Database 
    UNTIL DATA satisfies termination condition, DO 
      BEGIN “apply rule” 
      RULE ← SELECT some rule in the set of rules 
                    that can be applied to DATA 
      DATA ← Result of applying RULE to DATA 
      END “apply rule” 
  END “production” 

 
 Control Strategy 

 
Irrevocable        Tentative 

 
Backtracking        Graph-Search 

 

 73



Production Systems 
 

Missionaries and Cannibals Solution Trace 
 

(3   3   L) 

 
(3   1   R)     (3   2   R)     (2   2   R) 

 
(3   2   L) 

| 
(3   0   R) 

| 
(3   1   L) 

| 
(1   1   R) 

| 
(2   2   L) 

| 
(0   2   R) 

| 
(0   3   L) 

| 
(0   1   R) 

 
(0   2   L)     (1   1   L) 

(0   0   R) 
 

 74



Specialized Production Systems 
 
Commutative Production Systems 
 

a) For any database, d, if rule r applies to d, then r applies to any 
descendant of d. 

b) If d satisfies the goal condition, then any database produced 
by applying r to d also satisfies the goal condition. 

c) Given a set R of rules applicable to d, the result of applying 
each member of R in sequence to d is independent of the 
order of the sequence. 

 
This is interesting because: 
 

a) An irrevocable control scheme is acceptable (assured of 
finding a solution). 

b) Once a rule has been found to be applicable, its preconditions 
no longer need to be tested. 

 75



Specialized Production Systems 
 
Example: Theorem-proving 
 

Database: T 
 
Rules: 
R1: T → A, B 
R2: T → B, C 
R3: A → D 
R4: B → E, F 

 

 
 

 76



Specialized Production Systems 
 
Decomposable Production Systems 
 
There exists a way to decompose the database so that parts of it can 
be processed independently, and so that the separate results can be 
combined into the solution of the original problem. 
 
Must be able to decompose both the database and the termination 
condition. 

 
This is interesting because: 
 

a) It allows parallel processing. 
 

b) Even without parallel processing it allows more efficient 
computation (by avoiding exploration of redundant paths). 

 
If the content of the database represents a problem, the 
decomposition results in series of subproblems to be solved. This 
approach is called Problem Reduction. (Note that the 
decomposition is recursive.) 

 77



Specialized Production Systems 

 
PROCEDURE Split 
  BEGIN “split” 
    DATA ← Initial Database 
    {Di} ← Decomposition of DATA; the individual Di 
          are now regarded as separate databases 
    {Ti} ← Decomposition of termination condition 
    UNTIL each Di satisfies Ti, DO 
      BEGIN “apply rule” 
        D*

 ← SELECT some database from {Di} that 
                    does not satisfy Ti 
        Remove D* from {Di} 
        RULE ← SELECT some rule in the set of rules 
                      that can be applied to D*  
        D*

 ← Result of applying RULE to D*  
        {di} ← Decomposition of D 
        Append {di} to {Di} 
      END “apply rule” 
  END “split” 

 78



Forward and Backward Reasoning 
 
Forward Reasoning: 

Working from the initial state to the goal state 
Working from known facts to new, deduced facts 
Forward Chaining / Data-driven Reasoning 
Bottom-up Reasoning / Antecedent Reasoning 

 
Backward Reasoning: 

Working from the goal state to the initial state 
Working from hypothesized conclusions back to known facts 
Backward Chaining / Goal-directed Reasoning 
Top-down Reasoning / Consequent Reasoning 

 
Example: Try to deduce that H is true. 
 

Database:  B C 
 
Rules:  R1.  B ∧ D ∧ E → F 
        R2.  D ∧ G → F 
        R3.  C ∧ F → A 
        R4.  C → D 
        R5.  D → E 
        R6.  A → H 
 
C → D 
    | 
    D → E 
        | 
B ∧ D ∧ E → F 
            | 
         C ∧ F → A 
                 | 
                 A → H 

 79



Graph Notation 
 
Directed Graph 
 

Nodes and Arcs 
Arcs are directed from one node to another 
Nodes = Databases / Arcs = Rules 
Given an arc directed from node ni to node nj, nj is called a 

successor of ni, and ni is a parent of nj
A sequence of nodes (ni,1, ni,2, …, ni,k), with each ni,j a successor 

of ni,j-1 is called a path of length k from ni,1 to ni,k
nj is accessible from ni if a path exists. nj is a descendant of ni 
and ni is an ancestor of nj

 
Tree 
 

A node has at most one parent 
A node with no parent is a root node 
A node with no successors is a tip node 
The root node has depth 0 
The depth of any other node is the depth of its parent node plus 1 

 
Cost 
 

c(ni,nj) is the cost of the path from ni to nj (i.e., the cost of applying 
the rules) 

 
Problem: Find a path form node s (the initial database) to goal node 
t (the goal database), or to any one of a set of nodes {ti} that satisfies 
the termination condition 
 
Explicit vs Implicit Graphs 

 80



Graph Search 
 
(GRAPH-SEARCH 
  (LAMBDA (s) 
     (PROG (OPEN CLOSED n M) 
           (SETQ OPEN (LIST s)) 
           (SETQ CLOSED NIL) 
      LOOP (COND 
             ((NULL OPEN) 
               (RETURN ‘FAIL))) 
           (SETQ n (CAR OPEN)) 
           (SETQ OPEN (CDR OPEN)) 
           (SETQ CLOSED (CONS n CLOSED)) 
           (COND 
             ((GOAL-NODE n) 
               (RETURN (TRACE-PATH n s)))) 
           (SETQ M (EXPAND n)) 
           (SETQ M (POINTERS M n OPEN CLOSED)) 
           (SETQ OPEN (ORDER M OPEN)) 
           (GO LOOP)))) 
 
 

 81



Search Strategies 

 

 
 

Uninformed Strategies 

 
Depth-First Search: Append M and OPEN 
 
Breadth-First Search: Append OPEN and M 

 82



 
 

Se
ar

ch
 E

xa
m

pl
e 

 

 83



 

Se
ar

ch
 E

xa
m

pl
e 

 

 84



 
 

Se
ar

ch
 E

xa
m

pl
e 

 

 85



 
 

Se
ar

ch
 E

xa
m

pl
e 

 

 86



Pointers 

 

 87



Heuristic Strategies 
 

Use task-specific information to reduce search without (necessarily) 
sacrificing the guarantee of finding a minimal length path. 

 
Usually try to minimize some combination of the cost of the path and the  
cost of the search required to find the path. (Averaged over all problems.) 

 
Heuristic Power 

 
Three ways to use heuristic information: 

 
1) Deciding which node on OPEN to expand next. 

 
2) Deciding which successors of a node to generate. 

 
3) Deciding which nodes on OPEN to discard, or prune, from the 

search tree. 

 
Evaluation Function (f) to estimate the “promise” of node n on OPEN. f(n) 
is the value. 

 
f(n) = d(n) + w(n) 

 
d(n) is the depth of node n in the search tree. 

 
w(n) is an estimate of the distance of n from the goal. 

 
Note: If f(n) = d(n), we get breadth-first search. 

 88



Algorithm A 
 

k(ni,nj) gives the actual cost of a minimal cost path between ni and nj. 
(k is undefined for nodes with no path between them.) 
 
k(n,ti) is the cost of a minimal cost path from node n to some goal node ti. 
 
h*(n) is the minimum of all k(n,ti) over the set of goal nodes {ti}. h*(n) is the 
cost of the minimal cost path from n to a goal node, so any path from n to 
a goal node that achieves h*(n) is an optimal path from n to a goal. (h* is 
undefined for any node that has no accessible goal node.) 
 
g*(s,n) is the cost of an optimal path from a given start node, s, to some 
arbitrary node n. (g* is undefined for n not accessible from s.) 
 
f*(n) is the cost of an optimal path from s to n plus the cost of an optimal 
path from n to a goal; that is, the cost of an optimal path from s 
constrained to go through n. (f*(s) = h*(s) is the actual cost of an 
unconstrained path from s to a goal.) 
 

f*(n) = g*(n) + h*(n) 
 
We want a function f to be an estimate of f*. 
 

f(n) = g(n) + h(n) 
 

g is an estimate of g* and h is an estimate of h*. 
 
g(n) could be the sum of the arc costs encountered while tracing the 
pointers from n to s. So, g(n) ≥ g*(n). 
 
h is called the heuristic function – this is the place where we can use task-
specific information. 
 
GRAPH-SEARCH using f as an evaluation function to order nodes on 
OPEN is called algorithm A. 
 
We can show that if algorithm A uses an h function such that h is a lower 
bound on h* (i.e., h(n) ≤ h*(n) for all nodes n), then it will find an optimal 
path to a goal. We call this version algorithm A*. 

 89



Graph Search 
 
Path Cost / Depth-Bound / Partial Expansion 

 
(GRAPH-SEARCH 
  (LAMBDA (s) 
    (PROG (OPEN CLOSED n M) 
          (SET-COST s 0) 
      **  (SET-DEPTH s 0) 
          (SETQ OPEN (LIST s)) 
          (SETQ CLOSED NIL) 
     LOOP (COND 
            ((NULL OPEN) 
              (RETURN ‘FAIL))) 
          (SETQ n (CAR OPEN)) 
          (COND 
            ((GOAL-NODE n) 
              (RETURN (CONS (GET-COST n) 
                            (TRACE-PATH n s))))) 
      **  (SETQ DEPTH (GET-DEPTH n)) 
      **  (COND 
            ((EQ DEPTH DEPTH-BOUND) 
              (SETQ OPEN (CDR OPEN)) 
              (SETQ CLOSED (CONS n CLOSED)) 
              (GO LOOP))) 
          (SETQ M (EXPAND n ALLFLG)) 
          (COND 
            ((OR ALLFLG (NULL M)) 
              (SETQ OPEN (CDR OPEN)) 
              (SETQ CLOSED (CONS n CLOSED)))) 
      **  (for m in M do 
            (SET-DEPTH m (ADD1 DEPTH))) 
          (SETQ M (POINTERS M n OPEN CLOSED)) 
          (SETQ OPEN (ORDER M OPEN)) 
          (GO LOOP)))) 
 
 

 90



 
 

Se
ar

ch
 E

xa
m

pl
e 

 

 91



 
 
 

Se
ar

ch
 E

xa
m

pl
e 

 

 92



A*: Best-First or Ordered Search 
 
Admissibility 
 
An algorithm is admissible if it always finds an optimal path (when a 
path exists). 

 
Results: 

1) GRAPH-SEARCH always terminates for finite graphs. 
 
2) At any time before A* terminates, there exists on OPEN a 

node n that is on an optimal path from s to a goal node, with 
f(n) ≤ f*(s). (We assume h(n) ≥ 0.) 

 
3) If there is a path from s to a goal node, A* terminates. 

[Corollary: Any node n on OPEN with f(n) < f*(s) will 
eventually be selected for expansion by A*.] 

 
4) A* is admissible. (If there is a path from s to a goal node, A* 

terminates by finding an optimal path.) 
 
5) For any node n selected for expansion by A*, f(n) ≤ f*(s) 
 
 Algorithm 2

*A  is more informed than 1
*A  if for all non-goal 

nodes, h2(n) > h1(n). 
 
6) If 2

*A  is more informed than 1
*A  then every node expanded by 

2
*A  is also expanded by 1

*A  (at least). 

 93



A*: Best-First or Ordered Search 
 
Monotone Restriction: Similar to a triangle inequality 
 

h(ni) ≤ h(nj) + c(ni,nj) 
 

nj is a successor of ni
 

7) If the monotone restriction is satisfied, then A* has already 
found an optimal path to any node it selects for expansion; 
that is, if A* selects n for expansion, and if the monotone 
restriction is satisfied, g(n) = g*(n). 

 
8) If the monotone restriction is satisfied, the f values of the 

sequence of nodes expanded by A* is nondecreasing. 

 
Efficiency Boost: Keep track of F, the max f value of all nodes 
expanded. If a node n on OPEN has f(n) < F, then it will eventually 
be expanded. If several such nodes exist, try choosing the node from 
among them with the smallest g value – to try to enhance the chance 
that the first path discovered to a node will be an optimal path. 

 
Relaxing the Optimality Requirement 
 

f(n) = (1 – ω)g(n) + ωh(n) 

 
Measures of Performance 

 
X = Number of Nodes Expanded 
P = Length of Solution Path 
L = P/(Length of Minimal Length Path) 
B = Effective Branching Factor: B + B2 + … + Bp = X 

 94



Bidirectional Search 
 
Assume no heuristics available, average branching factor b, solution 
at depth d. 

 
= ≈ ≥∑

d
i d

i
Nodes b b  for b  2  

 
Say b = 4, d = 8, approx ⋅ 47 10  

 
Search in both directions to cut depth to d/2. 

 
/

/= ≈ ≥∑
d 2

i d 2

i
Nodes 2 b b  for b  2  

 
Say b = 4, d = 8, approx 512 

 
Problems 
 

Comparisons 
 
At step d/2 alone require  comparisons. =id/2 d/2 d b b b
 
Search Frontiers that don’t meet in the middle. 

 95



Heuristic Power 
 

1) Path Cost.  
 

2) Number of nodes expanded to find the path.  
 

3) Computational Effort required to compute h.  

 
Tradeoffs 
 

Search Effort vs Path Cost 
 (e.g., theorem proving)  

 
 

 96



 

 
 

 97



 

 

 98



 

 
 

 99



AND/OR Graph Search 

Hypergraphs: k-connectors (hyperarcs) directed from one parent 
node to a set of successor nodes. 
 

 
 
Solution Graph: G from node n to set of nodes N 
 
Connector Costs 

1) Sum Costs: 1 in k(n,N) c k(n ,N) ... k(n,N)= + + +  
2) Max Costs: 

in 1 iMAX k(n,N) c k(n ,N), ... k(n ,N)⎡ ⎤⎣ ⎦= +  

 

 100



 101

AND/OR Graph Search 

 
 
(AO* 
  (LAMBDA (s) 
     (PROG (G G' n S m OLDCOST NEWCOST) 
           (SETQ G (LIST s)) 
           (SET-COST s (H s)) 
           (COND 
             ((TERMINAL-NODE s) 
               (MARK s 'SOLVED))) 
     OLOOP (SETQ G' (TRACE-MARKED-CONNECTORS s G)) 
           (COND 
             ((SOLVED s) 
               (RETURN (CONS (GET-COST s) G')))) 
           (SETQ n (NSELECT G')) 
           (SETQ G (APPEND G 
                     (INSTALL (EXPAND n) n G))) 
           (SETQ S (LIST n)) 
     ILOOP (COND 
             ((NULL S) (GO OLOOP))) 
           (SETQ m (MSELECT S G)) 
           (SETQ S (REMOVE m S)) 
           (SETQ OLDCOST (GET-COST m)) 
           (SETQ NEWCOST (REVISE-COST m)) 
           (COND 
             ((OR (SOLVED m) 
                  (NOT (EQUAL OLDCOST NEWCOST))) 
               (SETQ S (APPEND S  
                         (MARKED-PARENTS m))))) 
           (GO ILOOP)))) 
 



 102

AND/OR Graph Search 
PSG: N0  Cost: 0, 1 Connector: N1, 2 Connector: N5 N4 
 
Selected Nonterminal Leaf Node: N0 
  Revising Cost of node: N0 0 → 3 
 
PSG: N0  Cost: 3, 1 Connector: N1 [Marked], 2 Connector: N5 N4 
 N1  Cost: 2, 1 Connector: N3, 1 Connector: N2 
 
Selected Nonterminal Leaf Node: N1 
  Revising Cost of node: N1 2 → 5, Adding Parents: N0 
  Revising Cost of node: N0 2 → 4 
 
PSG: N0  Cost: 4, 1 Connector: N1, 2 Connector: N5 N4 [Marked] 
 N5  Cost: 1, 1 Connector: N6, 2 Connector: N7 N8 
 N4  Cost: 1, 1 Connector: N5, 1 Connector: N8 
 
Selected Nonterminal Leaf Node: N5 
  Revising Cost of node: N5 1 → 2 [Solved], Adding Parents: N0 
  Revising Cost of node: N0 4 → 5 
 
PSG: N0  Cost: 5, 1 Connector: N1, 2 Connector: N5 N4 [Marked] 
 N5  Cost: 2, 1 Connector: N6, 2 Connector: N7 N8 [Marked] 
 N4  Cost: 1, 1 Connector: N5, 1 Connector: N8 
 N7  Cost: 0 
 N8  Cost: 0 
 
Selected Nonterminal Leaf Node: N4 
  Revising Cost of node: N4 1 → [Solved], Adding Parents: N0 
  Revising Cost of node: N0 5 → 5 [Solved] 
 
PSG: N0  Cost: 5, 1 Connector: N1, 2 Connector: N5 N4 [Marked] 
 N5  Cost: 2, 1 Connector: N6, 2 Connector: N7 N8 [Marked] 
 N4  Cost: 1, 1 Connector: N5, 1 Connector: N8 [Marked] 
 N7  Cost: 0 
 N8  Cost: 0 
 
N0: Property List 
(CONNECTORS ((1 (NT) 1 NIL) (2 (N5 N4) 2 T)) 
 H 0 [Solved] T COST 5 PARENT NIL EXPANDED T) 



 

 
 

 103



 
 

 
 

 104



 105

AM 

Lenat, 1976: 
 
Open-ended heuristic search to find interesting concepts and 
conjecture relationships between them in elementary mathematics. 
 
AM as a production system. 
 

Database: Collection of concepts, represented as frames. 
Initially over 100 concepts given. Arranged in a generalization 
network. Approximately 25 slots per concept. 

 
Examples: 

Set, Ordered Set, List 
Difference, Intersection 
Equality 

 
Rules: Heuristics for suggesting (i) new tasks to pursue, (ii) 
new concepts to create, or (iii) details to be filled in for an 
existing concept (and making new conjectures about concepts). 

 
Control Strategy: Agenda. An ordered list of suggested tasks 
to execute (ordered by heuristic weights). This is essentially 
graph search controlled by heuristic ranking of utility of tasks. 
The agenda corresponds to the OPEN list. Repeat – Choose 
highest priority task on agenda and “execute” it. Also use 
priority rating to determine amount of resources to spend 
(350 → 35 CPU secs, 350 list-cells) 



Chapter 5 AM:   Discovery in Mathematics as Heuristic Search -106- 
 

 
 
The diagram above represents the “topmost” concepts which AM had initially, shown 
connected via Specialization links (\) and Examples links (|||). The only concepts not 
diagrammed are examples of the concept Operation. There are 47 such operations. 
 
Also, we should note that many entities exist in the system which are not themselves 
concepts. For example, the number “3”, though it be an example of many concepts, is not 
itself a concept All entities which are concepts are present on the list called CONCEPTS, 
and they all have property lists (with facet names as the properties). In hindsight, this 
somewhat arbitrary scheme is regrettable. A more aesthetic designer might have come up 
with a more uniform system of representation than AM's. 

 

 106



 107

AM 

Sample Concept: 
 
 Name(s): Set, Class, Collection 
 Definitions: 
  Recursive: λ (S) 
   [S= {} or Set.Definition (Remove(Any-member(S),S))] 
  Recursive quick: λ (S) [S={} or Set.Definition (CDR(S))] 
  Quick: λ (S) [Match S with {…} ] 
 Specializations: Empty-set, Nonempty-set, Singleton 
 Generalizations: Unordered-Structure, Collection, 
   Structure-with-no-multiple-elements-allowed 
 Examples: 
  Typical: {{}}, {A}, {A,B}, {3} 
  Barely:  {}, {A, B, {C, {{{A, C, (3,3,9), <4,{B},A>}}}}} 
  Not-quite:  {A,A}, (), {B,A} 
  Foible: <4,1,A,1> 
 Conjectures: All unordered-structures are sets. 
 Intuitions: Geometric: Venn Diagram. 
 Analogies: {set, set operations} ≡ {list, list operations} 
 Worth: 600 [on a scale of 0 – 1000] 
 View: 
  Predicate: λ (P) {x∈Domain(P) | P(x)} 
  Structure: λ (S) 
   Enclose-in-braces(Sort(Remove-multiple-elements(S))) 
 Suggest: If P is an interesting predicate over X, 
 Then consider {x∈X | P(x)}. 
 In-domain-of: Union, Intersection, Set-difference, Subset, 
 Member, Cartesian-product, Set-equality 
 In-range-of: Union, Intersection, Set-difference, Satisfying 
 



 108

AM: Sample Rules 

If the current task was (Fill-in examples of X), 
 and X is a predicate 
 and more than 100 items are known in the domain of X, 
 and at least 1 0 cpu secs were spent trying to randomly 
  instantiate X, 
 and the ratio of successes/failures is both >0 and less 
  than .05 
Then add the following task to the agenda: 
 (Fill-in generalizations of X), 
  for the following reason: 
   “X is rarely satisfied; a slightly less restrictive 
    concept might be more interesting.” 
  This reasons's rating is computed as three times the ratio 
   of nonexamples/examples. 
 



 109

AM: Sample Rules 

If the current task was (Fill-in examples of F), 
 and F is an operation from domain space A into range B, 
 and more than 100 items are known examples of A 
  (in the domain of F), 
 and more than 10 range items (in B) were found by applying F 
  to these domain items, 
 and at least 1 of these range items is a distinguished member 
  (esp: extremum) of B, 
Then (for each distinguished member ‘b’∈B) create the following 
 new concept: 
 
 Name: F-inverse-of-b 
 Definition: λ (x) ( F(x) is b ) 
 Generalization: A 
 Worth: Average(Worth(A), Worth(F), Worth(B), 
  Worth(b), ||Examples(B)||) 
 Interest: Any conjecture involving both this concept and 
  either F or Inverse(F) 
 
 The reason for doing this is: “Worthwhile investigating those 
  A’s which have an unusual F-value, namely, those whose 
  F-value is b” 
 The total amount of time to spend right now on all these new 
  concepts is computed as: Half the remaining cpu time in the 
  current task's time quantum. 
 The total amount of space to spend right now on all these new 
  concepts is computed as: The remaining space time quantum 
  for the current task. 



 110

AM: Sample Rules 

If the current task is to fill in examples of the activity F, 
One way to get them is to run F on randomly chosen examples 
  of the domain of F. 
 
If the current task is to Check Examples of the operation F, 
 and F is an operation from domain space A into range B, 
 and F has at least 10 examples, 
 and a typical one of these examples is “<x  → y>” 
  (so x∈A and y∈B) 
 and (Forsome Specialization BB of B), y is a BB, 
 and all examples of F (ignoring boundary cases) turn out 
  to be BB's, 
Then print the following conjecture: “F(a) is always a BB, not 
  simply a B”, 
 and add it to the Examples facet of Conjectures concept, 
 and add “<A → BB>” as a new entry to the Domain/Range 
  facet of F, replacing “<A → B>”, 
 and if the user asks, inform him that the evidence for this 
 was that all ||Examples(F)|| examples of F (ignoring boundary 
  examples) turned out to be BB's, 
 and check the truth of this conjecture by running IF on boundary 
  examples of A. 
 



 111

AM: Sample Task 

Activity: Fill in some entries 
Facet: for the GENERALIZATIONS facet 
Concept: of the PRIMES concept 
Reasons: because 

(1) There is only 1 known generalization of Primes, so far 
(2) The worth rating of Primes is now very high 
(3) Focus of attention: AM just worked on Primes 
(4) Very few numbers are Primes; a slightly more plentiful 

concept might be more interesting. 
Priority: 350 [on a scale of 0-1000] 



 
 

 112



 

 
 
 

 113



 

 114



 115

 

AM: Summary 

Main Limitation: Unable to examine heuristics and devise new 
ones. Eventually its built-in heuristics were too general to be of 
much use. 
 
 
 
Is AM … 
 
 Intelligent? 
 
 Creative? 
 
 Learning? 
 
 Useful? 
 



Searching Game Trees 

Game Trees are similar to AND/OR Trees: You may select any 
single move when it is your turn (OR), but you must be able to 
respond to all possible replies by your opponent (AND). 
 

 
 
Static Evaluation: It is not generally feasible to search forward  
to the end of a game to find “goal states.” Why? 
Hence search forward a few moves and evaluate the likelihood of 
a win from that point. How? 
Then try to use the information found by “looking ahead” to find a 
good first move (which may well not turn out to be on the optimal 
path to a win). 
 
 
MINIMAX Procedure: 

 
Backed-Up values 

 116



Searching Game Trees 

Grundy's Game: Divide a stack into two stacks that are unequal 
 

 
 

 117



Searching Game Trees 

 

 
 

 118



Searching Game Trees 

 
 

 119



 120

Searching Game Trees 

ALPHA-BETA Procedure: Generates same result as MINIMAX – but 
more efficiently. 
 
Interleave tree generation and evaluation. 
 
Compute upper and lower bounds for backed-up value at each node 
n such that, unless α < Value(n) < β, the game will never pass 
through node n. 
 
α value of a MAX node is set to current largest backed-up value 
of its successors. (Note that α value of a node can never 
decrease.) 
 
β value of a MIN node is the current smallest backed-up value of 
its successors. (Note that β value of a node can never increase.) 
 
Prune whenever: 
 
1. For a MIN node: β ≤ α for any MAX node ancestor (α cutoff). 
2. For a MAX node: α ≥ β for any MIN node ancestor (β cutoff). 
 
Effectiveness: 
 
Assume a regular tree, depth d, branching factor b. MINIMAX 
would have to examine bd nodes. 
 
In the best case (where successors are generated in order of 
their true backed-up values), ALPHA-BETA examines 
approximately 2bd/2 nodes. 
 
 In the worst case, ... 
 See Knuth and Moore (1 975) for details. 
 



Searching Game Trees 

ALPHA-BETA: Critical Nodes 
 
 

 
 
 
Type 1: The root node and all first successors of type 1 nodes. 
 
Type 2: All further successors (except the first) of type 1 nodes 

and all successors of type 3 nodes. 
 
Type 3: First successors of type 2 nodes. 
 

 121



 122

Searching Game Trees 

Improving Effectiveness: 
Move Ordering: preliminary evaluation estimate 
Refutation Moves: 
Backed-up Evaluation: using extra information 
Satisficing: setting a “satisfactory” value to be obtained 
Iterative Deepening: 
Quiescence Extensions: the horizon effect 
Limiting Breadth: (perhaps variable according to ranking) 
Goal-directed Move Generation: 



 123

Searching Game Trees 
(MINIMAX 
  (LAMBDA (BOARD ALPHA BETA DEPTH) 
    (PROG (BOARDS MOVE NEXT-BOARD 
             NEW-VALUE MOVES RESULT) 
          (COND 
            ((OR (QUIET BOARD) 
                 (NOT (SETQ BOARDS 
                        (PLAUSIBLE-MOVES BOARD)))) 
              (RETURN 
                (LIST (STATIC-VALUE BOARD DEPTH) 
                      NIL)))) 
          (SETQ MOVE 1) 
          (SETQ RESULT (LIST ALPHA NIL)) 
     LOOP (COND ((NULL BOARDS) (RETURN RESULT))) 
          (SETQ NEXT-BOARD (CAR BOARDS)) 
          (SETQ NEW-VALUE (MINIMAX NEXT-BOARD 
                                   (MINUS BETA) 
                                   (MINUS ALPHA) 
                                   (ADD1 DEPTH))) 
          (SETQ MOVES (CADR NEW-VALUE)) 
          (SETQ NEW-VALUE (IMINUS (CAR NEW-VALUE))) 
          (COND 
            ((IGREATERP NEW-VALUE ALPHA) 
              (SETQ ALPHA NEW-VALUE) 
              (SETQ RESULT 
                (LIST NEW-VALUE 
                      (CONS MOVE MOVES))))) 
          (COND 
            ((IGEQ ALPHA BETA) 
              (PRINT-MESSAGE BOARDS DEPTH) 
              (RETURN RESULT))) 
          (SETQ BOARDS (CDR BOARDS)) 
          (SETQ MOVE (ADD1 MOVE )) 
          (GO LOOP)))) 
 



 124

Searching Game Trees 

MINIMAX Execution Trace: Nilsson, p. 124. 
 
   Node evaluated, value 0 
   Node evaluated, value 5 
   Node evaluated, value -3 
MINIMAX trims 1 at level 5 
   Node evaluated, value 3 
MINIMAX trims 2 at level 4 
   Node evaluated, value 5 
   Node evaluated, value 2 
MINIMAX trims 1 at level 4 
MINIMAX trims 1 at level 2 
   Node evaluated, value 5 
   Node evaluated, value 1 
   Node evaluated, value -3 
MINIMAX trims 1 at level 5 
   Node evaluated, value -5 
MINIMAX trims 1 at level 5 
MINIMAX trims 1 at level 3 
   Node evaluated, value 2 
   Node evaluated, value 3 
   Node evaluated, value -3 
MINIMAX trims 1 at level 5 
   Node evaluated, value -1 
MINIMAX trims 1 at level 5 
   Node evaluated, value 0 
MINIMAX trims 1 at level 5 
   Node evaluated, value 4 
   Node evaluated, value 5 
MINIMAX trims 1 at level 2 
   Node evaluated, value -1 
MINIMAX trims 1 at level 5 
MINIMAX trims 1 at level 3 
 
Backed-up value and Move Sequence: 1 (2 1 1 1 1 2) 
 



 125

GPS 

General Problem Solver: The first problem-solving program to 
separate its general problem-solving methods from knowledge 
specific to the task at hand. 
 
Describe a task as a triple <S,G,O> 
 

S = Initial Object (State) 
G = Goal Object (State) 
O = Operators (Rules) 

 
Transform S into G using O. 
 
GPS uses a problem-reduction method called Means-Ends 
Analysis. The search is organized around the goal of reducing the 
difference between the initial object and the goal object. 
 



GPS: Goal Types and Methods 

1. Transform object A into object B 

 
 
2. Reduce difference D between object A and object B 

 
 
3. Apply operator Q to object A 

 
 

 126



GPS 

Table of Connections: Order the differences by difficulty and 
associate a list of operators with each difference. 
 
Implicit operator selection 
 

 
 
Example: 
 

Initial Object: At(Fred,Home-in-Halifax) 
Final Object: At(Fred,Wreck-Cove-in-Vancouver) 
 
d greater than 1000 Fly At(Fred,Airport) 
d between 1 and 100 Drive At(Fred.Car) 
d less than 1 Walk 
 (Walk to Car, Drive to Airport) 
d less than 1 Walk 
 (Walk to Airplane, Fly to Vancouver) 
d between 1 and 100 Drive At(Fred,Car)   ?? 
 Take Bus      At(Fred,Stop) 
d less than 1 Walk 
 (Walk to Stop, Take Bus to UBC) 
d less than 1 Walk 
 (Walk to Wreck Cove) 

 127



 128

Predicate Calculus 

Motivation: Need a language for representing facts about the 
world. State vectors are not always appropriate. 
 
Example: How to represent... 
 

All 375A students are going to get rich. 
Alice is a 375A student. 
 
Is Alice a 375A student? 
Is Alice going to get rich? 

 
 
Syntax: 
 

Predicate Symbols: MARRIED 
Function Symbols: father 
Variable Symbols: x y z 
Constant Symbols: FRED ALICE TREE 
 
Term: Constant | Variable | Function(Term1, Term2, ...) 
Atomic Formula: Predicate-Symbol(Term1, Term2, . . .) 

 
Example: 
 
    MARRIED(KRIS,RITA) 
    MARRIED(father(KRIS),mother(KRIS)) 
 



 129

Predicate Calculus 

Semantics: To give an atomic formula (wff – well-formed 
formula) meaning, we must interpret it as making an assertion 
about a domain (e.g., set of integers, 8-puzzle configurations, set 
of mathematicians,...). Given a wff and an interpretation (or 
model), we can assign a value T or F to it. 
 
Example:    P(A,f(B,C))     D = set of integers. 
 

Assign some element of D to every constant symbol in the wff. 
 
A → integer 2 
B → integer 4 
C → integer 6 
 
Assign a function over D to every function symbol in the wff. 
 
f → addition function 
 
Assign a relation among the elements of D to every predicate 
symbol in the wff. 
 
P → greater-than relation 
 
Under this interpretation, the wff states “2 is greater than the sum 
of 4 plus 6.” The value of the wff is F. (Suppose we re-interpret 
the wff so that A → 11...) 
 



Predicate Calculus 

Connectives:  ¬  ∧  (&)  ∨  →  (⊃) 
 
Examples 
 
CLEARTOP(BLOCK1) ∧ ONTABLE(BLOCK1) ∧ HANDEMPTY 
 
HOLDING(BLOCK1) ∨ HOLDING(BLOCK2) 
 
¬HOLDING(BLOCK3) 
 
A → B  (¬A ∨ B)       Implication: Antecedent → Consequent 
 

 
 
Literal: Atomic Formula | ¬ Atomic Formula 
 
Propositional Calculus: Can't say “All terminals have keyboards.” 
 
Quantifiers: 
 

Universal:  ∀ All     Existential: ∃ There exists 
 
Examples 
 
All terminals have keyboards. 
(∀x) [TERMINAL (x) → HAS-KEYBOARD(x)] 
 
There is a terminal that does not have a keyboard. 
(∃x) [TERMINAL(x) ∧ ¬HAS-KEYBOARD(x)] 
 
For every integer, there exists an integer that is larger. 
(∀x)(∃y) [LARGER(y,x)] 
 
Interpretation Scope 
Quantified Variable Bound Variables 
Free Variables 

 130



 131

Predicate Calculus 
wff: Literals | (Quantifier Variable)[wff] 
 
Sentence: wff with all variables bound 
 
Ground Instance or Ground wff: No variables 
 
First Order Predicate Calculus: Cannot quantify over predicate 
symbols or function symbols. 
 

Cannot say:  (∀x)(∃P)[P(father(x)) → P(x)] 
 
Example wff: 
 
(∀x)[MAILMAN(x) → (∃y){DOG(y) ∧ HAS-BITTEN(y,x)}]

 
Example non-wffs: 
 

¬f(A) f[P(A)] 
Q{f(A),[p(B) → Q(C)]} ∧ A(x) 

 
Overview 
 
Given an interpretation over a finite domain, there are ways of 
establishing the truth value for any wff (truth table method). 
 
Valid wff: Truth value is T for all interpretations (Tautology if 
a ground wff). 
 
Equivalent wffs: Truth values are the same, regardless of their 
interpretation. 
 
¬(A ∧ B) ≡ ¬A ∨ ¬B 
 
 
A wff is satisfiable if there is some interpretation in which the 
wff is true. (The interpretation satisfies the wff.) 
 
(∀x)P(x) P(A) ∧ ¬P(A) 



Predicate Calculus 

Can always determine the validity of a wff that contains no 
quantifiers. 
 
Not always possible if quantifiers are involved (Checking 
procedure may not terminate). Hence PC is undecidable. 
 
But...Can always prove the validity of valid wffs; Cannot always 
prove the invalidity of invalid wffs. Hence PC is semidecidable. 
Also, can prove the validity of certain classes of formulas with 
quantifiers (decidable subclasses). 
 
 
A wff X logically follows from a set of wffs S provided that 
every interpretation that satisfies each wff in S also satisfies X. 
 
P(A)  logically follows from  (∀x) P(x) 
(∀x)P(x)   does not logically follow from  P(A) 

 
1. (∀x)[P(x) ∨ Q(x)] 
2. ¬Q(A) 

For what interpretations does P(A) 
logically follow from 1 and 2? 

 

 
 

 132



 133

Predicate Calculus 

Inference Rules: Applied to wffs to produce new wffs 
 

Theorem: A wff derived from application of inference rules to a 
set of wffs. (The sequence of rule applications is a proof.) 
 
Sound Rules: Any theorem derivable from a set also logically 
follows from the set. 
 
Complete Set of Rules: All wffs that logically follow are 
theorems (i.e., can prove any provable theorem). 

 
Natural Deduction: Elimination and Introduction [FOL] 
 

Modus Ponens: Given X, X →
 Y, infer Y 

 
Universal Specialization: Given (∀x)P(x), infer P(A) 
 

Resolution: (Robinson, 1965) Complete. 
 



Resolution 
Overview 
 
Problem: To show that wff W logically follows from set of wffs S. 
Method: Show that the set S ∪ {¬W} is unsatisfiable. 
 

 
 
This is called a Refutation Process. 
 
The key idea is to compute the resolvent of two parent clauses. 
 

[A clause is a disjunction of literals in which all variables are universally 
quantified. We will see an algorithm for converting any PC wff into a set 
of clauses.] 

 
The resolvent is another clause that logically follows from its parents. 
 

Resolution is a generalization of:  [(A∨B)∧(C∨¬B)] → (A∨C) 
 
Example: 
 

 
 
We need to consider two processes: 
 

1.) Conversion to clause form. 
 

2.) Matching and unification of literals – where unification means finding 
substitutions for variables that make expressions identical. (A general 
form of pattern matching.) 

 134



 135

Conversion to Clause Form 
Steps: 
 

1.) Eliminate implication signs. 
 

2.) Reduce scopes of negation signs. [Negate only one predicate] 
 

3.) Standardize variables. 
 

4.) Eliminate existential quantifiers. [Skolem functions] 
 

5.) Convert to prenex form. [Prefix/Matrix] 
 

6.) Put matrix in conjunctive normal form. 
 

7.) Eliminate universal quantifiers. 
 

8.) Eliminate ∧ signs. 
 

Example: 
 
(∀x)(∀y){[A(x) → ¬C(x,y)] → ¬(∀x)(∃z)[P(x,z)∧R(z)]} 
 
Step 1 
(∀x)(∀y){¬[¬A(x)∨¬C(x,y)]∨¬(∀x)(∃z)[P(x,z)∧R(z)]} 
Step 2 
(∀x)(∀y){¬[¬A(x)∨¬C(x,y)]∨(∃x)¬(∃z)[P(x,z)∧R(z)]} 
(∀x)(∀y){¬[A(x)∨¬C(x,y)]∨¬(∃x)(∀z)¬[P(x,z)∧R(z)]} 
(∀x)(∀y){¬[¬A(x)∨¬C(x,y)]∨(∃x)(∀z)[¬P(x,z)∨¬R(z)]} 
(∀x)(∀y){[A(x)∧C(x,y)]∨(∃x)(∀z)[¬P(x,z)∨¬R(z)]} 
Step 3 
(∀x)(∀y){[A(x)∧C(x,y)]∨(∃u)(∀z)[¬P(u,z)∨¬R(z)]} 
Step 4 
(∀x)(∀y){[A(x)∧C(x,y)]∨(∀z)[¬P(g(x,y),z)∨¬R(z)]} 
Step 5 
(∀x)(∀y)(∀z){[A(x)∧C(x,y)]∨[¬P(g(x,y),z)∨¬R(z)]} 
Step 6 
(∀x)(∀y)(∀z){[A(x)∨¬P(g(x,y),z)∨¬R(z)]∧[C(x,y)∨¬P(g(x,y),z)∨¬R(z)]} 
Step 7 
[A(x)∨¬P(g(x,y),z)∨¬R(z)]∧[C(x,y)∨¬P(g(x,y),z)∨¬R(z)] 
Step 8 
A(x)∨¬P(g(x,y),z)∨¬R(z) 
C(x,y)∨¬P(g(x,y),z)∨¬R(z) 
 



 136

Unification 

Substitution: s =   {t1/v1, t2/v2, … } 
 
Means substitute ti for vi, where ti is a term, and vi is a variable. 
 

Examples 
 
Given:     L = P(x,f(y),B) 

s1 = {z/x, z/y} Ls1 = P(z,f(z),B) 
s2 = {f(A)/x, B/y} Ls2 = P(f(A),f(B),B) 

 
Given:     L = IN(?x,?y) 

s = {BLOCK1/?x,BLOCK2/?y} Ls = IN(BLOCK1,BLOCK2) 
 
Definition: Given two literals, L1 and L2, we say that substitution s unifies 
L1 and L2 provided L1s = L2s. 
 

Examples 
 

L1 = Q(x,f(y),z) L2 = Q(B,f(g(A)),z) 
s = {B/x, g(A)/y} 
s = {B/x, g(A)/y, A/z) 

 
There exists an algorithm for finding the meet general unifier (MGU) for a 
set of literals. It is based on pairwise unification. 
 

Example 
 
S = {P(x,y), P(f(z),x), P(w,f(A))} 
S1 = {P(x,y), P(f(z),x)} 
 σs1

 = {f(z)/x, f(z)/y} 
S2 = {S1σs1

, P(w,f(A))} = {P(f(z),f(z)), P(w,f(A))} 
 σs2

 = {f(A)/w, A/z} 
σs = σs1

σs2
 = {f(A)/x, f(A)/y, f(A)/w, A/z} 

Sσs = {P(f(A), f(A))} 
 



 137

Unification 
(UNIFY 
  (LAMBDA (E1 E2) 
    (PROG (TEMP Z1 Z2) 
          (COND 
            ((OR (ATOM E1) (ATOM E2)) 
              (COND 
                ((NOT (ATOM E1) 
                  (SETQ TEMP E1) 
                  (SETQ E1 E2) 
                  (SETQ E2 TEMP))) 
              (COND 
                ((EQ E1 E2) 
                  (RETURN NIL)) 
                ((VARIABLE E1) 
                  (COND 
                    ((OCC E1 E2) (RETURN 'FAIL)) 
                    (T (RETURN (LIST (CONS E2 E1)))))) 
                ((VARIABLE E2) 
                  (RETURN (LIST (CONS E1 E2)))) 
                (T (RETURN 'FAIL))))) 
          (SETQ Z1 (UNIFY (CAR E1) (CAR E2))) 
          (COND 
            ((EQ Z1 'FAIL) (RETURN 'FAIL))) 
          (SETQ Z2 (UNIFY (SUBSTITUTE Z1 (CDR E1)) 
                          (SUBSTITUTE Z1 (CDR E2)))) 
          (COND 
            ((EQ Z2 'FAIL) (RETURN 'FAIL))) 
          (RETURN (COMPOSE Z1 22))))) 
 
(UNIFY ‘(P x) ‘(P A)) 
  ((A . x)) 
    (P A) 
 
(UNIFY ‘(P (f x) y (g y)) ‘(P (f x) z (g x))) 
  ((x . y) (x . z)) 
    (P (f x) x (g x)) 
 
(UNIFY ‘(P (f x (g A y)) (g A y)) ‘(P (f x z) z)) 
  (((g A y) . z)) 
    (P (f x (g A y)) (g A y)) 
 



 138

Resolution 

Forming Resolvents of Pairs of Clauses 
 
Given two parent clauses, {Li} and {Mi}, with no common variables. 
 
Find subsets {li}   ⊆  {Li} and {mi}  ⊆  {Mi} such that MGU  λ exists for  
{li}  ∪  {¬mi}. 
 
Example: 
 
{Li} = P(x,f(A)) ∨ P(x,f(y)) ∨ Q(y) 
{Mi} = ¬P(z,f(A)) ∨ ¬Q(z) 

 
One possibility: 
 
{li} = {P(x,f(A))} 
{mi} = {¬P(z,f(A))} 
  λ = {z/x} 

 
Resolvent: 
 
[{Li} − {li}]λ ∪ [{Mi}  − {mi}]λ = P(z,f(y)) ∨ Q(y) ∨ ¬Q(z) 

 
Key Idea: If two clauses are unifiable and their resolvent is NIL, then they 
are contradictory – not simultaneously satisfiable. 

 
Example: 
 
P(A) and ¬P(z) resolve to NIL under λ = {A/z} 

 



 139

Resolution Refutation 

Example: 
 
Given: 
 
1. (∀x)(∃y){MAILMAN(x) → [DOG(y)∧HAS-BITTEN(y,x)]} 
2. MAILMAN(OSCAR) 
3. (∀x)(∀y)[HAS-BITTEN(x,y) → ¬FRIENDS(y,x)] 
 
Prove: 
 
4. (∃z)[¬FRIENDS(OSCAR,z)] 
 
Negate 4 
 
5. ¬(∃z)[¬FRIENDS(OSCAR,z)] 
 
Put 1 in clause form 
 

(∀x)(∃y){¬MAILMAN(x)∨[DOG(y)∧HAS-BITTEN(y,x)]} 
(∀x){¬MAILMAN(x)∨[DOG(f(x))∧HAS-BITTEN(f(x),x)]} 

 
Distributive Law: (A∨(B∧C)) → (A∨B)∧(A∨C) 
 

(∀x){[¬MAILMAN(x)∨DOG(f(x))]∧[¬MAILMAN(x)∨HAS-BITTEN(f(x),x)]} 
 
6. ¬MAILMAN(x)∨DOG(f(x)) 
7. ¬MAILMAN(x)∨HAS-BITTEN(f(x),x) 
 
Put 3 in clause form 
 
8. ¬HAS-BITTEN(z,y)∨¬FRIENDS(y,z) 
 
Put 5 in clause form 
 
5. ¬(∃z)[¬FRIENDS(OSCAR,z)] 
 (∀v)[FRIENDS(OSCAR,v)] 
 
9. FRIENDS(OSCAR,v) 
 



Resolution Refutation 

Start resolving 

 
 
Base Set: 2,6,7,8,9 
8 and 9 are the Parents of 10 – it is their Descendant 
Derivation Graph 
Refutation Tree 
 
Production System: 

Database: Set of Clauses 
Rule: Resolution 
Control Strategy: Irrevocable (Commutative) 

 
Possible Control Strategies: 
 

1. Breadth-First [Complete] 
 
Restricting Resolutions: 
 

2. Set-of-Support (negated goal wff or descendants) [Complete] 
3. Linear-Input Form (base set) [Incomplete] 
4. Ancestry-Filtered (base set or parent-ancestor) [Complete] 

 
Ordering Strategy: 
 

5. Unit Preference (single-literal clauses) 
 

 140



Answer Extraction 

Suppose we do not simply want to prove a theorem, but also to extract 
some answer. With exactly what z is OSCAR not on friendly terms? We 
desire a constructive proof. 

 
Method: 
 

1) Append to each clause arising from the negation of the goal wff its 
own negation. 
FRIENDS(OSCAR,v) → FRIENDS(OSCAR,v) ∨ ¬FRIENDS(OSCAR,v) 

 
2) Perform the same resolutions as used before in deriving a 

contradiction. 
 
3) The clause left at the root is the answer statement. 
 

Example Revisited: 
 

 
 
What is f(OSCAR)? A Skolem function arising from the first wff. f(OSCAR) 
is the domain element such that: 
DOG(f(OSCAR)) ∧ HAS-BITTEN(f(OSCAR),OSCAR) = T 

 

 141



 142

Rule-Based Deduction Systems 

What did we lose by going to clause form? ... Extra-logical, 
domain-specific, control information. 
 
Rule-Based Deduction: Use direct methods – not refutation 
methods. Leave implications in their original form (Efficiency). 
 

Rules: General knowledge about a problem domain – including 
control knowledge. 

 
Facts: Specific knowledge relevant to a particular case. 

 
[Resolution theorem-prover as a production system] 

 
Some rules are best applied in the forward direction – some in the 
backward direction. Search in the direction of decreasing number 
of alternatives. 
 
CAT(x) → ANIMAL(x) forward 
 
¬ANIMAL(x) → ¬CAT(x) backward 
 
Control Knowledge: 
 

1) Direction of rule application. 
2) Order in which to try subgoals. 

[P1 ∧ P2 ∧  P3] → Q 
3) Which rules to apply to a particular subgoal. 
4) Order in which to try rules. 
5) Which rules to apply after solving a particular subgoal 

(demons). 
 
Placement of Control Knowledge: 
 

1) Object-level Knowledge vs Meta-level Knowledge. 
2) Rules as programs. Procedural Representation (e.g., 

PLANNER). 
 



 143

Robot Problem Solving 

Simple environment – “blocks” world. 
 
Synthesis of a sequence of robot actions that (if executed correctly) will 
achieve a stated goal – planning as opposed to plan execution. 
 
Commutative Production Systems (Resolution): How to handle rules that 
must delete wffs when applied? 
 
Could use situation variable in each predicate. 
 

ON(C,A,S0) ∧ CLEAR(C,S0) ∧ CLEAR(B,S0) 
 

Prove: (∃s)[ON(A,B,s) ∧ ON(B,C,s)] 
 
An action is a function that maps one situation into another. 
 
place(x,y,s): 
 
[CLEAR(x,s)∧CLEAR(y,s)∧DIFF(x,y)] → ON(x,y,place(x,y,s)) 
 
Frame Problem: What about assertions that are not affected by actions? 
Need frame axioms. 
 

[ON(u,v,s) ∧ DIFF(u,x)] → ON(u,v,place(x,y,s)) 
 
QA3 – Cordell Green. One frame axiom per unaffected predicate per action. 
(Can do better than this by treating relations as individuals [on(A,B)] or by 
using higher-order logic.) 
 
Combinatorial Explosion. Many frame assertions. Control ... 
 



 144

STRIPS 

Model actions as standard production rules. 
 

Precondition: conjunction of literals 
 

Action: add list + delete list 
 

place(x,y): 
 
  precondition:    CLEAR(y) ∧ HOLDING(x) [ ∧ DIFF(x,y)] 
  action: 
    add list:      ON(x,y) ∧ HANDEMPTY 
    delete list:   CLEAR(y) ∧ HOLDING(X) 

 
 

grasp(x): 
 
  precondition:    CLEAR(x) ∧ HANDEMPTY 
  action: 
    add list:      HOLDING(x) 
    delete list:   HANDEMPTY 

 
Don't need frame axioms. Explicitly indicate assertions that are changed by 
an action. This assumes ... ? 
 
Forward Reasoning: Find literals among the facts that unify with each of the 
precondition literals in a consistent way. If such literals can be found, then 
the rule precondition matches the facts and the rule can be applied. 
 
Backward Reasoning: Find a literal contained in the goal description that 
unifies with one of the literals in the add list. If such literals can be found, 
then the rule can be applied. 

 



STRIPS 

Example: 
 

 
 
(∀x)(∀y)(∀z)[CONNECTS(x,y,z) → CONNECTS(x,z,y) 

 
Goal wff 

 
(∃x)[BOX(x) ∧ INROOM(x,R1)] 

 
GOTHRU(d,r1,r2): 

 
pre:      INROOM(ROBOT,r1) ∧ CONNECTS(d,r1,r2) 
add:      INROOM(ROBOT,r2) 
delete:   INROOM(ROBOT,$) 

 
PUSHTHRU(b,d,r1,r2): 

 
pre:      INROOM(b,r1)∧INROOM(ROBOT,r1)∧CONNECTS(d,r1,r2) 
add:      INROOM(ROBOT,r2), INROOM(b,r2) 
delete:   INROOM(ROBOT,$), INROOM(b,$) 

 

 145



 146

The GPS Algorithm 

GPS searches forward by iterating through a cycle of difference 
measurement and operator application. Recursion is used 
whenever the an operator cannot be applied because of unsatisfied 
preconditions. Depth-first backtracking is used when faced with 
dead-end situations. 
 
(GPS 
  (LAMBDA (S G O) 
    (PROG (D Q P S1) 
     LOOP (COND 
            ((MATCH S G) (RETURN S))) 
     BTP1 (SETQ D (FIND-DIFFERENCE S G)) 
          (COND 
            ((NULL D) (RETURN 'FAIL))) 
     BTP2 (SETQ Q (FIND-OPERATOR D O S)) 
          (COND 
            ((NULL Q) (GO BTP1))) 
          (SETQ P (PRECONDITION Q D S)) 
          (SETQ S1 (GPS S P O)) 
          (COND 
            ((EQ S1 'FAIL) (GO BTP2))) 
          (SETQ S (APPLY-OPERATOR Q S1)) 
          (GO LOOP)))) 
 
Heuristics for Controlling Search 
 

1) Each subgoal in a sequence should be easier than the 
preceding subgoal. 

2) A goal should be easier than all of its ancestors. 
3) A new object should not be much larger than the objects in 

the top-level goal. 
4) Once a goal has been generated, an identical goal should not 

be generated again. 
5) Limit the total depth of the search tree. 

 



STRIPS 

STRIPS uses means-ends analysis (GPS). 
 
Triangle Tables 
 

 
 

Cell (i,0) contains clauses from the original model that are still true when 
rule i is to be applied and that are preconditions of rule i. 
 
Marked clauses elsewhere in row i are preconditions for rule i that are 
added to the model by previous rules. 
 
The effects of applying rule i are shown in row i+1. The rule's add list 
appears in cell (i+1,i). For each previous rule, say, rule j, clauses added by 
rule j and not yet deleted are copied into cell (i+1 ,j). 
 
The add list for a sequence of rules 1 through i, taken as a whole, is given 
by the clauses in row i+1 (excluding column 0). 
 
The preconditions for a sequence of rules i through n, taken as a whole, are 
given by the marked clauses in the rectangular subarray containing row i and 
cell (n+1,0). This rectangle is called the ith kernel of the plan. 
 
Difficulties with STRIPS and Means-Ends Analysis 

 
1. Non-optimal plans. 
2. Interacting solutions to subgoals. 
3. Limitations in representing world (Frame Problem). 
4. Combinatorial problems. 

 
 147



 148

ABSTRIPS 

Key Ideas: 
 
1. Recognize the most significant features of a problem. 
2. Plan an outline of a solution in terms of those features. 
3. Plan at progressively greater levels of detail (top-down design). 
 
Method: 
 
Attach criticality value to each literal. Ignore literals in preconditions that 
are below current level of criticality. 
 
Assigning Criticality Values to Literals: two Steps: manual start – automatic 
refinement. 
 

General Guiding Criteria:
 

1) If the truth value of a literal cannot be changed by any rule, it gets 
maximum criticality 

2) If a literal L in a particular rule can easily be achieved once other 
preconditions of the same rule are satisfied, then L should be less 
critical than those others. 

3) If satisfying L requires conditions beyond those others in the rule 
precondition, then L gets high, but not maximum, criticality. 

 
Example: 
 
TURN-ON-LAMP(x): 

 
pre: TYPE(x,LAMP) ∧ (∃r)[INROOM(ROBOT,r) ∧ 
    INROOM(x,r)] ∧ PLUGGED-IN(x) ∧ NEXTTO(ROBOT,X) 
 

Step 1: Initial Assignment 
 

Predicate Rank 
 TYPE  4 
 INROOM  3 
PLUGGED-IN  2 
 NEXTTO  1 



 149

ABSTRIPS 

Step 2: Refinement 
 

1) TYPE cannot be changed by any available rule → highest criticality 
(6). 

2) INROOM appears in add list of some rule, but requires more conditions 
than TYPE, so it gets high criticality, but not maximum, value → 5. 

3) PLUGGED-IN can be achieved by a plan based on the above 
preconditions. Therefore its value → 2. 

4) NEXTTO – ditto above, value → 1. 
 

Control of ABSTRIPS (recursive function): 
 
Form plan at highest level of abstraction and refine. Input: criticality level 
and plan (list of rules) to be refined 
 
Check plan by seeing whether each rule applies. If not, set up subgoal and 
solve at the current level of criticality 
 
If subgoal cannot be solved, reject plan and return control to a more 
abstract level. Reject failed node and form alternate plan. 
 
Results: 
 
11 rule plan: STRIPS: 30 CPU-min, ABSTRIPS: 5 CPU-min, 50% of nodes 
expanded 

 



 150

Natural Language Processing 

Why Study? 
 
Easier and more natural communication with computers 
 
Method for extending our understanding of language, understanding, and 
mind. 
 
Difficulties: 
 
Sheer size and complexity of grammar and vocabulary – artificial vs natural 
languages 
 
Ambiguity, pronouns, ellipsis, ungrammatical utterances. 
 

“Time flies like an arrow” 
 
“Bill hit Joe on the shoulder” 
“He was black and blue by the next morning” 
 
“I saw the astronomer on the hill with a telescope” 

 
Large amount of common-sense knowledge needed (even for two sentence 
children's stories) 
 
Representing meaning of words and sentences (1st order predicate calculus 
insufficient) 
 
What is meaning? What is understanding? 

 



 151

Natural Language Processing 

Grammars: 
 

1. Context-free (type 2) 
 

S → NP VP DET → the 
NP → DET NOUN NOUN → boys 
NP → NOUN NOUN → apples 
VP → VERB NP VERB → eat 

 
Parsing: 

 
            S 
 
      NP         VP 
 

DET  NOUN      VERB  NP 
 
the  boys       eat NOUN 
 
                    apples 

 
Unable to extend context-free grammars to capture natural language 
complexity. 
 
Chomsky: deep structure + transformations → surface structure 
 
Analysis cannot be done in two separate and sequential phases: syntactic 
and semantic. 
 
Case Grammars: relationships between noun phrases and verb (e.g., agent –  
instigator of action, object) 

 



Augmented Transition Networks 

A representation for natural language grammars. Finite State Transition 
Diagrams, Recursive Transition Networks, → ... 
 
Arcs (terminal or non-terminal symbols of the grammar): the non-terminal 
symbols imply recursion 
 
Nodes: states (START → FINAL) 
 

 
 
The little boy in the swimsuit kicked the red ball. 
 
ATN: 
 

1) Registers to store information (e.g., partial derivation trees). 
2) Arbitrary tests on arcs (e.g., semantic checks). 
3) Actions attached to arcs (e.g., to modify data structure returned). 
 

Widely-used for constructing different types of grammar for question- 
answering systems, text generation systems, and speech-understanding 
systems. 

 

 152



Pick up a big red block. 
OK. 
Grasp the pyramid. 
I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. 
Find a block which is bigger than the one you are holding and put 
it into the box. 
BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS 
TALLER THAN THE ONE I AM HOLDING. 
OK. 
What does the box contain? 
THE BLUE PYRAMID AND THE BLUE BLOCK. 
 
.... 
 
Had you touched any pyramid before you put the green one on 
the little cube? 
YES, THE GREEN ONE. 
When did you pick it up? 
WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED 
BLOCK AND A LARGE GREEN CUBE. 
Why? 
TO GET RID OF IT. 
Why did you do that? 
TO CLEAN OFF THE RED CUBE. 
Why did you do that? 
TO STACK UP THE RED CUBE, A LARGE RED BLOCK AND A 
LARGE GREEN CUBE. 
Why did you do that? 
BECAUSE YOU ASKED ME TO. 

 153
 



SHRDLU 

Terry Winograd 1971: Simple blocks world dialogues, small vocabulary, 
written in Micro-Planner, covers total problem of natural language 
understanding. 
 
1) Syntactic Parser: Uses systemic grammar – central items are groups of 

words with slots for various features: (Note the reason for dealing with 
syntax). 

 

 
 

DET: the   ORD: first    NUM: three   ADJ: old 
CLASF (classifier): city CLASF: fire  NOUN: hydrants 
Q (qualifier): PREPG: without covers  Q: CLAUSE: you can find 

 
Parser is top-down, left-right with some demons to change flow (e.g., 
recognizing an “AND” – conjoined structures). Constrained Backup to 
deal with ambiguity – try to get it right the first time. 
 

2) Semantic Analysis: Dictionary includes semantic information (properties) 
(e.g., table is immovable). Word definitions are programs to be 
executed.   (Note similarity to ATN's) 

 
3) Pragmatics or Discourse Knowledge: local context (e.g., to answer 

“Why” questions), global context (e.g., “Pick up the pyramid” is 
ambiguous), world knowledge. 

 
Integrated syntax/semantics/pragmatics + narrow domain of discourse helps 
to avoid backup. 
 
Translating sentences into programs to be executed in response to an 
imperative. 

 

 154



 155

SHRDLU 

Limitations: 
 

1) Ad hoc representation of speaker/hearer internal structure: hard to 
extend 

 
2) Word definition as program is still inadequate: in general, words have 

definitions only in context (e.g., Is the Pope a bachelor). 
 

3) Thinking of every utterance as a command to do something is inadequate. 
The hearer is engaged in a complex process of trying to understand what 
the speaker is saying and why. 

 
4) Representation and reasoning operations inadequate for common-sense 

knowledge normally seen in language. Deductive logic doesn't cover 
everything. 

 



Speech Understanding 

Isolated Word Recognition (1960's): Compare signal to templates (a priori 
stored representations of the acoustical pattern of words in vocabulary). 
Select best match according to distance metric. Problems: noise, differing 
pronunciation from time to time by a single speaker, by multiple speakers. 
Current systems: 120 words, 99.5% accuracy (tuning vs vocabulary size). 
Cost <$80k. 
 
Problems with Connected Speech: 
 

1) Pronunciation of individual words changes when words are juxtaposed 
to form a sentence – syllables are dropped (“swallowed”) at word 
boundaries. 

 
2) Word boundaries are hard to find. 
 

The signal doesn't look like a concatenation of the signals associated with 
individual words. Combinatorial explosion again! 
 
How to proceed: Use syntactic and semantic knowledge to generate 
expectations about the content of an utterance – to reduce search. 
 

 

 156



 157

Speech Understanding 

ARPA Project (1971-76): 
 
GOALS: 
 

1) Accept connected speech 
2) From many, cooperative speakers (~5) 
3) In a quiet room with good microphone 
4) With a few training sentences per speaker 
5) Accepting a 1000 word vocabulary 
6) Using an artificial syntax (finite-state language, restricted ATN) 
7) In a constraining task (document retrieval, travel management) 
8) Yielding < 10% semantic error 
9) In a few times real time (on a 100 MIPS computer). 

 
 
Sources of Knowledge: 
 
1) Phonetics: representations of the physical characteristics of the 

sounds in all words in the vocabulary 
 
2) Phonemics: rules describing variations in pronunciation that appear 

when words are spoken together in sentences (co-articulation across 
word boundaries, "swallowing" of syllables) 

 
3) Morphemics: rules describing how morphemes (units of meaning) are 

combined to form words (formation of plurals, verb conjugations, 
etc.) 

 
4) Prosodics: rules describing fluctuation of stress and intonation across 

a sentence. 
 
5) Syntax: grammar 
 
6) Semantics: meaning of words and sentences 
 
7) Pragmatics: rules of conversation 
 
Lexicon: Dictionary – represented internally in terms of the pronunciations 
of all words. 

 



 158

HEARSAY-II 

Document Retrieval Task: “Are any by Feigenbaum and Feldman?” 
 

Results: 90% semantic accuracy, 73% word-for-word correct, 1011 word 
vocabulary, 60-80 MIPS for real-time response. Highly-constrained 
grammars (BF = 33, 46). Grammar stylized for task: 
noun → topic | word | author | ... 

 
Ideas: 

 
Blackboard (Global Database): to simplify flexible cooperation. Contains 
hypotheses at multiple levels of abstraction. Uniform structure for all 
hypotheses – connected through AND/OR graph. Idea of “support from 
below” for a hypothesis. 

 
Cooperating Experts: Multiple knowledge sources (KSs). (The rules in a 
production system.) Separate, anonymous, asynchronous, and independent –  
to increase flexibility – addition, deletion, modification. A KS has a 
PRECONDITION (a test on one hypothesis level) and an ACTION. 
 
Hypothesize-and-Test: All cooperation (KS ACTIONs) viewed as creation, 
testing, and modification of hypotheses about the utterance. Basic 
assumption: KSs make errors. The control structure has to take this into 
account. 
 
Control Strategy: KSs are triggered by a blackboard monitor. KSs are 
scheduled according to priorities calculated from stimulus frame (set of 
hypotheses appropriate for action by a KS) and response frame (stylized 
description of the likely action of a KS). (Note: Asynchronous processing 
down to word level only – why?) 

 



HEARSAY-II 

Blackboard Partitioning/Scope of KS Operation: 
 
 

 
 

 159



MACHINE LEARNING 

Learning System: A system that uses information obtained during one 
interaction with its environment to improve its performance during 
subsequent interactions. 
 
Types of Learning: 
 

 
 
Approaches to Learning Systems: 
 
Adaptive Control: Estimation of parameters of a mathematical structure 
chosen by the designer to represent either the system to be controlled or 
the controller. Stability, Convergence [provable]. 

[Assumes that the world can be modeled parametrically.] 
 
Pattern Recognition: Learn rules for assigning patterns  (usually feature 
vectors) to particular known classes by examining a set of patterns with 
known class membership. Convergence, Risk, Optimality, [provable]. 

[Assumes that patterns can be modeled as points in n-space, and 
classification (finding a set of decision surfaces) is the problem.] 

 
Artificial Intelligence: Learn structural (symbolic) descriptions for patterns, 
concepts. Use of domain-specific knowledge in addition to general-purpose 
inductive mechanisms. Knowledge Representation (networks, rules,...), 
Generalization Languages, Matching, Search, Complexity. 

 

 160



 

 
 

 161



 

 

 162



 
 

 

 163



 
 

 
 

 164



 
 

 
 
 
 165



 166

MACHINE LEARNING 

Checkers: (Samuel: late 50's, early 60's) 
 

1) Rote Learning: When you encounter a position for the first time, 
store its description and static value estimate. In a future game, if 
you encounter the position (say during look-ahead), use the 
previously stored static value. This has the effect of extending the 
number of ply that you look ahead. [Slow, continuous learning rate: 
Most effective during opening and end-game phases of play. Why?] 

 
2) Parameter Learning: Modify the static evaluation polynomial. 

 
V(p) = c1f1(p) + c2f2(p) + ... + cnfn(p) 

 
How to know that “correct” score of a position? 
 

1) From Book Games: Compare machine's ranking of positions to 
expert's ranking. 

2) Compare static value with backed-up value: Assume 
consistency. 

 
Problems: Assumption of linear polynomials (no interaction between 
terms), No method for generating new parameters. [Mesa 
phenomenon] 
 
Samuel later considered interactions – with significant improvement in 
performance [Signature Tables]. 
 
Samuel's program achieved world championship caliber. 
 

STRIPS and MACROPS: Method Learning 
 
Winston, 1970: Concept Learning 

 



MACHINE LEARNING 

 
Learning System Model: 
 

 
 
BLACKBOARD: Global Database (as per HEARSAY-II) 
 
PERFORMANCE ELEMENT: Problem Solver (e.g., MYCIN) 
 
INSTANCE SELECTOR: Supplies examples and non-examples of concept to 
be learned (+ve and -ve training instances) [Teacher]. 
 
CRITIC: Evaluation, Localization (credit assignment), and Recommendation 
(what kind of change to make – not how to implement that change). 
 
LEARNING ELEMENT: Interface between Critic and Performance Element. 
Abstract Recommendations → Specific Changes. 
 
WORLD MODEL: Conceptual Framework. Definitions of objects, methods, 
etc. The type of information that can be learned. 
 
[Systems inside of Systems] 

 167



 168

GENERALIZATION AS SEARCH 

Learning from a set of training instances (as per Winston 
 

Given: 
 
1) Instance Language 

 
 Unordered pairs of objects, characterized by three properties 

Size: Large, Small 
Color: Red, Orange, Yellow 
Shape: Square, Circle, Triangle 

 
 Example: { (Large Red Square) (Small Yellow Circle) } 

 
2) Generalization Language 

 
 Example: { (Small ? Circle) (Large ? ?) } 

 
3) Matching Predicate: Tests whether an instance and a generalization 

match (i.e., whether the instance is contained in the instance set that 
is delimited by the generalization). 

 
4) Training Instances: Each is an instance from the given language, along 

with its classification as either an instance of the target 
generalization (positive instance) or not an instance of the target 
generalization (negative instance) 

 
Determine: Generalizations within the given language that are consistent 
with the training instances (i.e., plausible descriptions of the target 
generalization) 

 
The generalization language describes a hypothesis space (search space) of 
possible generalizations. 

 
More-Specific-Than Relation: A partial ordering of the hypothesis space- 
gives a method for organizing the search. 

 
G1 is more-specific-than G2 iff 
     { i∈I | M(G1,i) } ⊆ { i∈I | M(G2,i) } 



GENERALIZATION AS SEARCH 
 
G1: { (Large Red Circle) (Large ? ?) } 
 
G2: { (? ? Circle) (Large ? ?) } 
 
G3: { (? ? Circle) (Large Blue ?) } 
 
 

 
 
Strategies 
 

1) Depth-first Search 
2) Specific-to-General Breadth-first Search 
3) Version Space Bidirectional Search 

 
Concerns: 
 

1) Complexity and Efficiency 
 

2) Using Incompletely Learned Generalizations * 
3) Selecting New Training Instances * 
4) Prior Knowledge * 
5) Inconsistency * 

 

 169



GENERALIZATION AS SEARCH 

Depth-first Search: Current Best Hypothesis 
 

For a Negative Instance, i: Find a way to make CBH more specific so that 
it no longer matches i – and so that it still matches all earlier positive 
instances. 
 
For a Positive Instance, i: Find a way to make CBH more general so that 
it matches i – and so that it still does not match any earlier negative 
instances. 
 
If no acceptable revision to CBH can be found, Backtrack to an earlier 
version of CBH, try an alternate branch in the search, and reprocess 
instances seen since then. 
 

Example: 
 

Instances: 
 
1. { (Large Red Triangle), (Small Blue Circle) }  + 
2. { (Large Blue Circle), (Small Red Triangle) }  + 
3. { (Large Blue Triangle), (Small Blue Triangle) }  - 

 

Search: 
 

    CBH1:  { (Large Red Triangle) 
             (Small Blue Circle) } 
 
 
                                  CBH2:  { (Large ? ?) 
                                           (Small ? ?) } 
 
CBH2:  { (? Red Triangle) 
         (? Blue Circle) } 

 

 170



GENERALIZATION AS SEARCH 

Specific-to-General Breadth-first Search: 
 

Initialize S to the set of maximally specific generalizations consistent 
with the first positive instance. 

 
For a Negative Instance, i: Retain in S only those generalizations that do 
not match i. 
 
For a Positive Instance, i: Generalize members of S that do not match i 
along each branch of the partial ordering, just enough so that they match 
i. Remove from S any member that is either more general than some 
other member, or that now matches a previous negative instance. 
 

Example: 
 

        ⎡ ⎤
⎢ ⎥
⎣ ⎦

S1: { (Large Red Triangle)

  (Small Blue Circle) }

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

S2: { (? Red Triangle)    ,     { (Large ? ?)

  (? Blue Circle) }           (Small ? ?) }
 

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

S3: { (? Red Triangle)

  (? Blue Circle) }
 

 

 171



GENERALIZATION AS SEARCH 

Version Space Bidirectional Search: 
 
Initialize S to the set of maximally specific generalizations consistent 
with the first positive instance. 
 
Initialize G to the set of maximally general generalizations consistent 
with the first positive instance. 
 
For a Negative Instance, i: Retain in S only those generalizations that do 
not match i. Make members of G more specific along branches of the 
partial ordering, in ways such that each member remains more general 
than some member of S, and just enough so that they no longer match i. 
Remove from G any member that is more specific than some other 
member. 
 
For a Positive Instance, i: Retain in G only those generalizations that 
match i. Generalize members of S along branches of the partial ordering, 
in ways such that each member remains more specific than some member 
of G, and just enough so that they match i. Remove from S any member 
that is more general than some other member. 
 

Example: 
 

        ⎡ ⎤
⎢ ⎥
⎣ ⎦

S1: { (Large Red Triangle)

  (Small Blue Circle) }

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

S2: { (? Red Triangle)    ,     { (Large ? ?)

  (? Blue Circle) }           (Small ? ?) }
 

 

           ⎡ ⎤
⎢ ⎥
⎣ ⎦

G1, G2: { (? ? ?)

  (? ? ?) }

 

 172



GENERALIZATION AS SEARCH 

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

S2: { (? Red Triangle)     ,     { (Large ? ?)

  (? Blue Circle) }            (Small ? ?) }
 

 
⎡ ⎤
⎢ ⎥
⎣ ⎦

S3: { (? Red Triangle)

  (? Blue Circle) }
 

 

       ⎡ ⎤
⎢ ⎥
⎣ ⎦

G3: { (? Red ?)    ,    { (? ? Circle)

  (? ? ?) }           (? ? ?) }

 
               ⎡ ⎤

⎢ ⎥
⎣ ⎦

G1, G2: { (? ? ?)

  (? ? ?) }

 173

 
Complexity: 
 

Type Time Space 
 
DFS O(pn) O(p+n) 
 
BFS O(spn+s2p) O(s+n) 
 
VSBS O(sg(p+n)+s2p+g2n) O(s+g) 
 



 174

MACHINE VISION 

Can a TV camera see? 
 
Can a computer see? 
 
Assume a computer understands a picture if it can describe the contents in 
the same terms that people might use, and if it can use the "knowledge" 
contained in such descriptions for future problem solving. 
 
Low-level problems: resolution, quantization, color, ... a lot of data! 
(512x512x16x256 ~ 109) 
 
Template Matching: Object Identification 
 

 

0000000000 0000000000 0000000000 
0000010000 0000111000 0000111000 
0001110000 0001101100 0001000100 
0000110000 0000000100 0000001000 
0000110000 0000001100 0000011000 
0000110000 0000111000 0000001100 
0000110000 0001000000 0001000100 
0001111000 0001111100 0000111000 
0000000000 0000000000 0000000000 
0000000000 0000000000 0000000000 

 
Problems with translation, rotation, scaling. Usually good for <100 patterns. 
 
How could we use this scheme to recognize triangles? 
 
A template is only good for identifying a single shape. A triangle is defined 
by a description and comes in an infinite variety of shapes. 
 
Proceed via elementary operations, like “find a straight line”, “find a 
corner”, “follow a contour”, and “count the objects.” 
 



 175
 



 
 

 
 

 176



MACHINE VISION 
 

Smoothing: low-pass filtering 
 

Sharpening: spatial differentiation, gradient estimation, edge enhancement. 
 

F(i,j) = |g(i,j) - g(i+1,j+1)| + |g(i,j+1) - g(i+1,j)| 
 

 
 
 
 

0000000000 0000000000 0000000000 
0000000000 0122222100 00+++++000 
0011111100 0200000200 0+00000+00 
0011111100 0200000200 0+00000+00 
0011111100 0200000200 0+00000+00 
0011111100 0200000200 0+00000+00 
0011111100 0200000200 0+00000+00 
0011111100 0122222100 00+++++000 
0000000000 0000000000 0000000000 
0000000000 0000000000 0000000000 

 
Line-Finding: 
 

1) Match local templates. May not be necessary if the sharpening 
operator has done a good enough job. 

 
 −  + −   − − −   − −  +    + − − 

−  + −    +  +  +   −  + −   −  + − 

−  + −   − − −    + − −   − −  + 

 

 177



MACHINE VISION 

2) Form lines. 
1) Add to a group any segment within 3 pixels (picture points) of 

any segment already in the group and not perpendicular to any 
segment already in the group. 

2) If a segment cannot be added to an existing group, it begins a 
new group of its own. 

3) When all such groups have been formed, draw a straight line 
between the two segments in each group that are farthest 
apart. 

 
 

Note ambiguity at corners 

 
4) Clean up based on knowledge about objects. 

 
Region Analysis: (Connectivity Analysis) 

 
1) Form regions (blobs) on the basis of similar average intensity, 

connectedness. 
 

2) Collect feature information about regions: 
1) Maximum limits of extent. 
2) Pointers to surrounded regions (holes) and the surrounding 

region. 
3) Area. 
4) Centroid. 
5) Axis of least moment of inertia 
6) Perimeter length. 
7) Perimeter point coordinates. 

 

 178



 

 
 
 

 

 179



 

 
 

 180



 
 

 
 

 181



 
 

 
 
 182



 
 

 

 183



 

 
 
 

 184



CONSTRAINTS 
 

Huffman/Clowes/Waltz: Classify edges as well as junctions (11 types) 
 

 
 
Boundaries and Cracks: Obscuring body lies to right of direction of arrow. 

 
Shadows: Arrow points to shadowed region. 

 
Separable Concave Edges: Obscuring body lies to right of direction of arrow; 
double arrow indicates that three bodies meet along line. 
 
Waltz: Classify regions according to illumination 
 

I - directly illuminated 
SP - projected shadow 
SS - self-shadowed 

 

 185



 

 
 

 186



 
 

 
 

 187



 188

 

CONSTRAINTS 

Relaxation Algorithm: (Constraint Propagation, Range Restriction) 
 
FOR each junction DO 
  BEGIN 
    Attach all possible labels to the junction 
    Remove any labels that are impossible given 
      the current context of the labels attached 
      to neighboring junctions 
    Iteratively remove labels from the context 
      by propagating the constraints embodied 
      in the list of labels for the junction 
      outward to the context until no more 
      changes can be made in the context. 
  END 
 
Waltz found computation time proportional to N (number of junctions) 
instead of M*N (for M labels). 
 
Started with the scene/background boundary [more constraint] 
 
Some junctions do not propagate effects [T junctions] 
 
More knowledge → Less search 
 

[Knowledge is Power] 


	Artificial Intelligence - CS375A - Notes - Part I - Dalhousie University - Fall 1981 1.pdf
	 
	 
	 
	 
	 Can Machines Think – Objections:
	 Can Machines Think – Objections:
	 Can Machines Think – Objections:
	 Heuristic Search
	 Knowledge Representation
	 
	 FRAMES and UNITS
	 FRAMES and UNITS
	 
	 Common-Sense Reasoning and Problem Solving
	 
	 Systems and Languages
	 Application Areas
	 
	 
	 
	 
	 DENDRAL
	 GPS: Power vs Generality
	 
	 
	 
	 
	 
	 LISP Basics
	 Evaluation
	 Atom Values
	 Stopping Evaluation
	 
	 Setting Values
	 Taking Lists Apart – 1
	 Taking Lists Apart – 2
	 Putting Them Back Together
	 CAR – CDR – CONS Summary
	 List Storage
	 CONS Revisited
	 Dotted Pairs
	 Garbage Collection
	 Testing for Equality
	 Some Useful Functions
	 Predicates
	 Arithmetic
	 List-Altering Functions
	 COND
	 SELECTQ
	 AND / OR
	 Defining Functions
	 Variable Binding
	 Variable Binding
	 Lambda Definitions
	 Recursion
	 Recursion
	 Recursion
	 Recursion
	 Writing Recursive Functions
	 Using Auxiliary Functions
	 Iteration
	 MAPCAR: List Iteration
	 MAPCAR: List Iteration
	 MAPCAR and APPLY
	 MAPCAR and APPLY
	 MAPCAR and APPLY
	 MAPCAR revisited
	 Atom Properties and Association Lists
	 Production Systems
	 Production Systems
	 Production Systems
	 Production Systems
	 Specialized Production Systems
	 Specialized Production Systems
	 Specialized Production Systems
	 Specialized Production Systems
	 Forward and Backward Reasoning
	 Graph Notation
	 Graph Search
	 Search Strategies
	 Pointers
	Heuristic Strategies
	 Graph Search
	A*: Best-First or Ordered Search
	 A*: Best-First or Ordered Search
	 Bidirectional Search
	 Heuristic Power

	Artificial Intelligence - CS375A - Notes - Part II - Dalhousie University - Fall 1981 1.pdf

