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The Barankin bound was derived from the Schwarz inequality, 
in a manner much like (6), by Kiefer [7]. One of the reviewers 
pointed out that the Barankin formulation can be specialized to 
include all the bounds for unbiased estimation, e.g., the Bhatta- 
charyya bounds. The formulation in this correspondence is 
limited since only first derivatives of H are considered. On the 
other hand, the formulation of (6) is not limited to unbiased 
estimation. 

Remarks 

It can be shown that Zacks’ bound (15) is smaller (looser) than 
the C-R bound (18), unless the vector V happens to be an 
eigenvector of DT. In that case the bounds are equal. This occurs 
for all Vif D = I. 

In signal parameter estimation problems one is almost always 
forced to assume D = 1, an identity matrix. Otherwise, informa- 
tion on the derivatives in D must be available. 
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Cepstrum Discrimination Function 

R. G. SMITH 

Abstract-An expression is derived for the function that governs the 
discrimination by the power cepstrum against components at large time 
delays. The function has been found to be useful in normalizing cepstrum 
displays. 

Cepstrum analysis is an appropriate technique for investigation 
of the different arrival times of continuous signals received in a 
multipath environment. A problem does arise, however, in the 
display of the results due to the use of data records of finite 
length in the intermediate spectrum computation. Components 
at large time delay are attenuated relative to those at short time 
delay [l] in a manner similar to that encountered in estimation 
of correlation functions [2]. In this correspondence an expression 
is derived for the exact form of the discrimination function for 
the cepstrum of a process consisting of a noiselike signal received 
as a primary component accompanied by a delayed, possibly 
attenuated, secondary component. The discrimination of the 
cepstrum at large time delay is found to be more severe than in 
the corresponding case of autocorrelation. A knowledge of the 
functional form of the discrimination is useful in that it allows 
simple resealing of the computed cepstral values prior to display. 
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This equalizes the contributions made by arrivals at all time 
delays and prevents domination of the display by arrivals at 
small time delay. 

We consider a signal in the discrete form (1) that arises, for 
example, in propagation of continuous underwater acoustic 
signals via both a direct and a surface reflected path 

Sk = x, + ~.$-,,,, k = 0, 1,. . ., N - 1 (1) 

where xk is the signal received via the direct path, ax&,,, is the 
signal received via the surface reflected path with a relative time 
delay m and attenuation coefficient u, and sk is the composite 
received signal, neglecting the effects of noise. Furthermore, xk 
is assumed to be a stationary band-limited process with variance 
0,’ and uniform spectral content, such that successive samples 
can be assumed to be uncorrelated. 

In order to compute the cepstrum discrimination function, we 
will first compute the autocorrelation function of the signal 
described by (1) and then the power cepstrum. In this way we 
can compare the discrimination by the two functions against 
components at large time delay. 

We will use the same definition of the power cepstrum as used 
in [l 1; that is, the power cepstrum of a signal is the power 
spectrum of the logarithm of the power spectrum of the signal. 

The discrete Fourier transform (DFT) of the signal is first 
computed using appropriate normalization 

N-l 
F, = N-l” ,& (xk + tlxk-,,,) eXP 

r=O,l,...,M-- 1 (2) 

where the N point data sequence has been augmented by 
(M - N) zeros (generally M 2 2N) to avoid aliasing effects. 

Equation (2) can be rewritten as follows 

+ N-$ilxk (1 + aexp (F)) exp (5) 

2 xk exp (q)] ) 
k=-m 

r = 0, 1,.-e, M - 1. (3) 

An estimate of the spectrum S, of sk is computed as follows 

where denotes time averaging over many records. It is 
assumed that with sufficient averaging Sr will approach the 
ensemble average S,, where 

r = 0, l,..., A4 - 1. (5) 

Now, an estimate of the discrete autocorrelation function is 
obtained simply by inverse Fourier transformation of the 
estimated spectrum. It is apparent that there will be two terms 
in this estimate; one centered at zero time delay due to the 
constant term, and the other centered at time delay m due to the 
cosine term that is associated with the second arrival. It is also 
apparent that the amplitude of the second term decreases 
linearly with time delay. This discrimination is a familiar result 
of the use of data records of linite length. 
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It is now relatively simple to derive the discrimination function 
for the cepstrum. The logarithm of the spectrum must be 
considered iirst. Hence (5) may be rewritten (with some 
manipulation) as follows 

log($) = log (1 + (e2)r+) COS r?)) 

+ log (b,Z(l + a’)), r =  0, l,..., A4 - 1. (6) 

Only the fist term is of interest in considering the discrimination 
function. We  will expand this term in a power series of the form 
(7). and simplify with the aid of (8) and (9) [3] to make its effect 
more readily apparent 

” lx” 

log (1 + x) = 2 (- 1’,- ) -l<x<l (7) 
II=1 

(8) 

COS~~+~ 0  = 2-2k lie (“” I’ ‘) cos [(l + 2(k - Z)>e]. (9) 

Use of (7x9) on the first term of (6) leads to the following 
equation, where terms of the series have been rearranged and Q, 
represents the 6rst term of (6) 

-g2 II- 
‘SW” 

‘2’.81[~~(~En)..,~~)] 

-in i n- 121~ngn ; 

0 

, r =  0, 1,. -0, A4 - 1 (10) 
even z 

where 

(11) 

The form of (10) demonstrates that there will be terms in the 
power cepstrum associated with multiples of the time delay m, 
that is, terms centered at m,2m,3m,. . . . The fundamental term 
(the term associated with delay m) ‘is of primary importance and 
summing all terms of the form cos (2amr/M) yields 

Q  & = jl n-121-ngn 
odd 

(n i l)cosfF), 

r =  0, l,,.., A4 - 1. (12) 

Hence the coefficient of the term associated with time delay m 
in the power cepstrum is the following (where the magnitude 
square arises due to the definition of the power cepstrum) 

The normalized form C,,,/C, is plotted in Fig. 1  as a function 
of the normalized time delay m/N for various values of a and 
N = 256.  

m/N 

Fig. 1. Cepstrum discrimination function, N = 256. 
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Fig. 2. Sample power cepstrum displays: (a) resealed to remove discrimina- 
tion; (b) normal. 

The expression for C,,, in (13) allows simple resealing of the 
output of a  power cepstrum processor prior to display, thus 
avoiding complete domination of the display by components at 
small time delay. This is demonstrated in the sample displays of 
Fig. 2, which show a time history of the power cepstrum of an 
underwater acoustic signal propagated via multiple paths. 

Each succeeding time interval is indicated by a horizontal 
trace and cepstrum magnitude by linear deflection modulation. 
In part (a) of the figure, the display has been resealed to remove 
discrimination according to the a = 1 curve of Fig. 1, and the 
component of interest, at a  delay of approximately 120 ms, is 
evident. In part (b), no resealing has been done and the 
component is barely visible. 

Equation (13) has been derived on the basis of a  signal with 
uniform spectral content. Signals not meeting this requirement 
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may lead to a more severe discrimination in that deviation from 
nonuniformity of the spectrum is generally interpreted by the 
power cepstrum as further small time delay content, thus adding 
to the problem. In such cases, the discrimination function should 
be used together with appropriate prewhitening techniques, such 
as liftering [4]. 
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A Note on the Use of Chandrasekhar Equations 
Calculation of the Kalman Gain Matrix 

ROBERT F. BRAMMER,  MEMBER,  IEEE 

Absiracf-This correspondence discusses some possible 

for the 

on the application of a new algorithm for recursive linear estimation. 
An algorithm proposed by Kailath using Chandrasekhar equations to 
calculate the Kalman gain matrix has been shown to be computationally 
advantageous in some special cases. This correspondence considers the 
case of controllable and observable linear systems and shows that the 
conditions required for the algorithm to be advantageous form a closed 
set of Lebesgue measure zero. 

Consider the following controllable and observable auto- 
nomous linear system: 

(L) 1 = Fx + Gw, (F,GQ112) controllable 

y = Hx + u, (F,H) observable 

where x E R”, w E R”‘, and a E RP. The initial state x(0) is a 
normally distributed random variable with mean p and covariance 
PO. The noise processes wand v are Gaussian white noise processes 
with mean zero and covariances Q and R, respectively. The 
variables x(O), w, and z, are assumed to be independent. If we 
denote by a(t) the conditional mean of x(t) given the observa- 
tions y(s), 0 5 s I t, and by P the covariance matrix of the 
process x(t) - f(t), then we can obtain the following equations 
of the classical Kalman filter: 

k = FSZ + K(t)(y - Hi), Z(O) = p (1) 

P = FP + PF= + GQG= - PH=R-‘HP, P(O) = PO (2) 

where K(t) = P(t)HTRsl. 
We shall use the following properties of these equations [lo]. 

Under the hypotheses of controllability and observability, the 
covariance matrix P(t) converges to a unique (independent of 
P(0)) positive definite limit P. Furthermore, the differential 
equation 

.i = F.jZ + K(t)(y - HZ) = (F - K(t)H)sZ + K(t)y (3) 
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is asymptotically stable. Therefore, if P(0) = p, then the real 
parts of the eigenvalues of the matrix 

F-~Q$= F-~HTR-~H (4) 

are all negative. 
It is evident that the calculation of K(t) requires the calculation 

of P(t) and that the calculation of P(t) requires the solution of 
n(n + 1)/2 simultaneous nonlinear differential equations. If, for 
example, observations are scalars (p = l), then K(t) contains 
only n elements, and it would be nice to find a method for cal- 
culating K(t) directly if P(t) were not of interest. In [6] Kailath 
presents an algorithm for calculating K(t), the gain matrix, 
without calculating P. This algorithm uses differential equations 
that Kailath describes as being of the Chandrasekhar type, 
which appear in certain astrophysical problems. In certain 
circumstances this algorithm is shown to be computationally 
advantageous. It is shown that if the matrix 

D = FP(0) + P(O)F= + GQG= - P(O)H=R-lHP(O) (5) 

has rank a (in) then the gain matrix K(t) can be computed by 
solving n(~ + a) nonlinear differential equations instead of 
n(n + 1)/2. Thus, if p + a < (n + 1)/2, the algorithm may be 
useful. The question that naturally arises is the following: 
which choices of P(0) yield matrices D with low rank? Since the 
determinant function is a polynomial, it follows that det D 
either vanishes for all PO or else it vanishes only on a set that is 
closed in the usual topology and has measure zero with respect 
to Lebesgue measure. 

For controllable and observable systems it is the purpose of 
this correspondence to show that det D does not vanish for all 
PO. Thus, for almost all PO, the matrix D has rank n. Thus, in 
the general case, there is no evident computational advantage 
in terms of the number of equations to be solved since n(~ + n) > 
n(n + 1)/2. 

Some hypothesis on the coefficient matrices must be made to 
obtain a result like this. The following well-known facts [5, p. 921 
from elementary linear algebra show that for a certain class of 
system matrices, all initial state covariance matrices yield a 
matrix D with rank u < n. Let p( .) be the rank function defined 
on the set of II x n matrices. The rank function satisfies the 
inequalities p(AB) 5 min (p(A),p(B)) and p(A + B) I p(A) + 
P(B). 

Using these inequalities, we can obtain an upper bound on the 
rank of D independent of P(0) 

AD) 5 Q(F) + P(G) + P(H). 

Consequently, it is easy to generate examples of a system in 
which a < n for all P(0). The point of the following theorem is 
that under the hypothesis of controllability and observability, 
which is the hypothesis of most interest in recursive estimation, 
this singular behavior of mapping a set of positive measure to a 
set of measure zero cannot occur even if the system matrices 
all have rank less than n. What is being proved here is not that 
the set of matrices D having rank less than n is of measure zero, 
but that the inverse image under the mapping defined by (5) 
of this set of matrices has measure zero under appropriate 
hypotheses. 

View the formula for D as a mapping from the space of sym- 
metric matrices to itself. This space is isomorphic to Rn(nf1)‘2. 
Call this mapping S. Thus we have 

D = S(p), D: Rh+1)/2 + Rn(n+l)/2. 


