
CONSIDERATIONS FOR MICROPROCESSOR-BASED TERMINAL DESIGN

Reid G. Smith

Heuristic Programming Project
Department of Computer Science

Stanford University
Stanford, California, 94305.

1 Introduction
We discuss the design of hardware and software for

inexpensive microprocessor-based terminal/microcomputers.1
Such devices are fundamentally microcomputers that have
been adapted, with specialized software, to operate as
remote terminals for a host computer.

The discussion centers on a specific video terminal
designed and constructed by the authors. This terminal is
based on the Intel 8080 microprocessor and is equipped
with software sufficient to emulate the characteristics of
standard video terminals required by several available
screen-oriented text editors in common use at sites
throughout the ARPAnet (such as E [Samuel, 1978] and
TV-Edit [Kanerva, 1975]).

Screen-oriented editors2 differ from other editors in
their use of high-speed video terminals to display the
contents of large sections of a file being edited. As editing
operations are performed, the display is revised to indicate
their effects on the file (i.e., editing operates in a What you
see is what you get mode). Such editors require terminals
capable of primitive text-processing operations, such as
inserting a character in a line of text by shifting the existing
characters. In addition to such capabilities, the terminal is
typically expected to support 8-bit transmission (instead of
the usual 7 bits plus parity), selectable modes for displaying
characters (e.g., normal or inverse video, blinking, or dual
intensity), and an 80-character line width.

Because of the high percentage of both user and
computer time invested in interactive editing of manuscripts
and programs at many computation sites, the careful design
of editing systems and terminals can have a strong influence
on the efficiency of both the user and the computer. We
believe that the capabilities of microprocessor-based
terminals will make them a central component of future
editing systems.3

We have found that the microprocessor adequately
serves as the controller for such terminals, and that a
software-based approach to the design of such terminals
offers substantial advantages in capabilities, flexibility, and
cost over the hardware-based approach. We suggest
guidelines for future designs of microprocessor-based
terminals on the basis of our experience designing and using
the terminal described here.

1 The authors wish to acknowledge a number of helpful
discussions with R. David Arnold and Pentti Kanerva.

2 This paper was edited with the terminal and the
screen-oriented editors TV-Edit and E (and transferred
between coasts via the ARPAnet several times during its
creation). The final camera-ready copy was produced on a
Xerox Graphics Printer.

3 We do not consider graphics here. See [Baskett,
1976] and [Flexer, 1978] for relevant discussions.

Tom M. Mitchell

Department of Computer Science
Rutgers, The State University of New Jersey

New Brunswick, New Jersey, 08903.

In order to take full advantage of the flexibility afforded by
microprocessor-based designs, we have implemented the
capability to download and execute 8080 programs written
and assembled on a host computer (as can be done, for
example, by the DEC GT-40 terminal). This allows the user to
customize and extend the features of his terminal. At the
same time, it provides access to the 8080 as a
microcomputer with the software development tools and mass
storage provided by the host computer. The terminal is thus a
complete, stand-alone microcomputer system specially
configured for its role as a terminal.

Most of the terminal functions are implemented in
software, using an 8080 as a terminal controller, and EPROM
to hold the display software. The terminal is connected to a
standard black-and-white television set or monitor at the
video amplifier. We have discovered that our own commercial
television sets have sufficient bandwidth in the video
amplifier to support lines of 80 characters, even though they
are of the older, tube variety. The terminal parts cost was
approximately $650 (small quantity prices, late 1976, not
including the television and the modem).

2 A Design for a Microprocessor-based Terminal

2.1 Hardware

The system is constructed on four S-100 Bus-
compatible circuit boards. The first houses an 8080
microprocessor and associated circuitry, 2048 bytes of
EPROM (2708), an 8-level priority interrupt circuit, and the
keyboard and serial line interfaces. The video display
interface is placed on the second board. It includes 2048
bytes of static RAM (2102-1), the memory-addressing and
control circuitry, and the screen-formatting circuitry. The third
board houses 4096 bytes of static RAM (2102-1). A
120 0 / 15 0 bps. split-speed modem is placed on the fourth
board. It is also possible to couple to an external modem at
speeds ranging from 150 to 9600 bps.

2.2 Video Display

2.2.1 Display Memory

The video display board contains 2048 bytes of
memory, used by the processor to store the ASCII codes of
characters to be displayed in the 25-line 80-character display.
This memory is addressed as part of the address space of
the microprocessor. The memory is constantly scanned by
the display circuitry that generates the raster scan video
signal. Memory conflicts between the processor and display
circuitry are resolved in favor of the processor, and
precautions are taken to minimize screen noise that arises
when the display circuitry is denied access to memory.

The top line of the display is used to display terminal
status information (on-line/local, full/half duplex, etc.). The
remaining 24 lines comprise the usable screen, which displays

CH1369-8/79/0000-0437$00.75 © 1979 437

http://www.rgsmithassociates.com/About.htm
http://www.cs.cmu.edu/%7Etom/

data transmitted from the host. Characters on the top line
are displayed white on black to set the line apart from the
usable screen, where characters are displayed black on
white.

2.2.2 Display Mode Control

The terminal can display characters in any combination
of normal/inverse video, blink/no blink, and normal/double
intensity.

Each 80-character line in the display uses 81 bytes of
memory. The first of the 81 bytes (called the display mode
byte) defines the display modes for characters in the line.
The remaining 80 bytes contain the ASCII codes of the
characters to be displayed in the line.

The display mode byte specifies two display modes (a
mode is any combination of normal/inverse video, blink, and
dual intensity). The eighth bit of each of the 80 character-
bytes is used to determine which of the two display modes
associated with the current line is to be used for the current
character.

This method allows a display of characters in any of the
combinations but allows only two distinct display modes for
characters on the same line. Because 8-bit memory has been
used, there are not enough bits per word to completely
specify the display mode for each character individually. The
method described above has served as a useful compromise
between having only two possible modes for the entire screen
and having eight possible modes for each character. We
discuss this issue further in Section 4.3.

3 Software
Within the hardware design described above, a range

of alternate terminals can be defined in software. In this
section, we describe the set of terminal features that we
have implemented in microcomputer software. The collection
of these features makes up the specifications of the terminal
as viewed by the host computer. We describe, as well, a
small amount of software written for the host computer that
eases the task of software development for the
microcomputer and eliminates the need for local mass
storage.

3.1 Terminal Software

We have written software for operating the
microcomputer as a video terminal capable of executing
several specialized functions: insert and delete characters
and lines, erase to end of line, blank screen, set display
mode, and address cursor--both relative (up, down, left, and
right) and absolute (to a specified row and column). As these
are software controlled (in the microprocessor), any similar
set of features is possible. The size of the 8080 code that
defines these terminal features is approximately
1.34 K b y t e s . 1

3.2 Microcomputer Software

We have written software to provide terminal
capabilities beyond those required to support screen-oriented
editors. In particular, we have written a monitor that runs in
the microprocessor and accepts commands from the
keyboard to execute specified tasks. The user may invoke
this local monitor at any time by typing the two control

1 The terminal emulates the functions of the Datamedia
Elite 2500 terminal [DATAMEDIA, 1976] necessary to run
the editors E and TV-Edit.

character sequence, ↑U ↑V.1 When this is done, software
control is passed from the section of code that emulates a
terminal to the monitor, which awaits a command. Some of
the commands currently available in the local monitor are
shown in Figure 3.2. The 8080 code that defines the local
monitor resides in 1.3 K bytes of memory.

Store Screen: store the current screen contents in local memory.
Recall Screen: display the screen stored in local memory.
Transmit Screen: transmit the currently displayed screen of text
to the host in the same format as if it had been typed from the
keyboard (trailing spaces are not transmitted).
Select Display Mode: set the mode for displaying characters
(normal/inverse video, etc.) as desired.
Logout Job: logout the host job (transmits the correct
characters to logout a job from the DEC-10 TENEX or the DEC-
20 TOPS-20 operating systems).
Go To Address: execute microcomputer program beginning at
specified address.
Exit: return to terminal mode of operation.

Figure 3.2. Local Monitor Commands.

3.3 Using the Host to Develop Microcomputer Software

One interesting aspect of microprocessor-based
terminals is the possibility that they can provide inexpensive,
stand-alone processing capabilities. The main expense
associated with current microcomputers is support-
peripherals such as floppy disks and input-output devices.
Microprocessor-based terminals connected to a host can be
configured with substantial savings if they rely upon the host
for mass storage and other support.

We have therefore included a capability to transfer
data from the host directly to the local memory of the
terminal. This capability to download data and code from the
host computer to any section of the memory of the local
microcomputer considerably eases the task of microcomputer
software development. Needing only the addition of memory
to the bare hardware to implement the basic microprocessor-
based terminal, one can take advantage of the full processing
capabilities of the microprocessor.2

3.3.1 Cross Assembler

The cross-assembler (called Micro-SYMBOL) runs on
the DEC-10 and DEC-20. It enables us to write software for
the terminal processor using the flexible time-sharing
facilities of the host.3 The Micro-SYMBOL cross-assembler is
similar to the MAC 80 assembler [INTEL, 1974] and
produces a machine code file in the same format. It can
produce machine code for the Intel 8080, the Motorola 6800,
the M. O. S. 6500 series, and the Zilog Z-80.

3.3.2 Downloader

The downloader (also written in SAIL) enables programs
assembled on the host computer (or any data in the correct
format) to be transferred directly to the local memory of the
microprocessor via the terminal connection. Downloaded data

1
↑U is an escape character. In order to transmit a real

↑U, it must be typed twice in sequence.
2 This feature is transparent to a user who does not

wish to make use of it.
3 Micro-SYMBOL was written in SAIL (an ALGOL-like

language [Reiser, 1976]) for the TOPS-10 operating system
by Bill Weiher at the Stanford Artificial Intelligence
Laboratory. It was modified for the TENEX and TOPS-20
operating systems by Reid Smith.

CH1369-8/79/0000-0437$00.75 © 1979 438

are distinguished from transmitted characters by prefacing
the data with the two control characters

↑U
↑D (NAK EOT).

Downloaded data is formatted in records. Each record
includes information concerning the number of bytes to be
stored, the starting address for the record, a checksum byte,
and a control byte (that specifies whether or not the
microprocessor is to proceed to the starting address after the
record has been correctly loaded). The download receiver in
the terminal software acknowledges receipt of each record
with

↑F (ACK) if the checksum is consistent with the received
record; or otherwise, with

↑U (NAK). The downloader will
attempt up to three retransmissions of an improperly received
record before aborting the download.

3.3.3 Execution of Local Programs

The downloaded program will be executed immediately
by the microprocessor if the control byte of the transmitted
record (see above) is set. Alternately, a program can be
downloaded without immediate execution. In this case it is
executed by entering the local monitor (described in Section
3.2) and executing the Go To Address command with the
starting address of the program.

3.3.4 Use of Local Terminal Software

Because the terminal software provides a natural
means for microprocessor input and output, and because it
contains several useful subroutines, we have found it
convenient to make the software readily available to
downloaded programs. We therefore maintain a table of
addresses of useful routines at a fixed place in memory so
that downloaded programs may access these routines given
the location of the table.

In addition we have found it extremely useful to allow
downloaded programs to treat the terminal software as a
virtual terminal, calling it with a sequence of characters to be
interpreted as though they had originated at the host. Thus,
downloaded programs may call the subroutine TERMINAL with
a queue of characters to be treated as characters input to
the terminal. By using this virtual terminal routine, it is
possible to write programs in the language of the virtual
terminal, using the control characters that specify the
special terminal functions (insert/delete line, etc.) as
commands interspersed with text. This capability allows
very compact local display processing programs to be
written.

4 Microprocessor-based Terminals

4.1 The System as a Computer Terminal

In its role as a terminal the microprocessor-based
design offers several advantages in terms of cost,
capabilities, and flexibility for the system.

The primitive text-processing operations (insert and
delete line, etc.) of the terminal described above are
typically implemented in hardware in other terminals. They
require special circuitry, and thus increased cost.
Implementing such features in software requires no additional
hardware other than a small amount of memory. We have
found that the cost of building a terminal with only these
primitive text-processing operations is less for software-
based design ($650, small quantity prices, late 1976, not
including the television and modem) than for the
corresponding hardware-based design.

In addition to cost, microprocessor-based designs for
terminals offer more capabilities than hardware-based
designs. The complexity of the features that can be
implemented in software (e.g., a local monitor) is limited only

by available memory; whereas for hardware-based designs,
the complexity of features that can be implemented is
strongly limited by the cost of additional hardware. In the
near future we expect to add capabilities such as macro
command definition--dynamic association of a string of
characters to be transmitted to the host with a single
keystroke. Thus, a user can define macros for sets of
commands that he frequently uses (e.g., logout job, or run a
given utility program with commonly entered input
parameters). It is likely that as experience with
microprocessor-based terminals grows, ideas for new
capabilities will quickly escalate (see, for example, the efforts
of the RITA project [Waterman, 1978]).

Possibly the most important feature of microprocessor-
based terminals is the increased flexibility that they provide.
General-purpose microprocessor-based terminals can be
mass produced at low cost and then customized for individual
uses by altering or extending the terminal software. In
addition, a single terminal can easily be redefined
dynamically by downloading new terminal software from the
host. Thus, a single design can be redefined for use in a
range of applications. For example, software for the terminal
described above is currently being designed (by Greg Cooper
at Stanford) that will extend the terminal features to simplify
and speed up interaction between a physician and an
established medical diagnosis aid program (MYCIN
[Shor t l i f fe , 1976]) . It is to be done by storing (in the
terminal) quick-response menus for normal interactions and
complete response choices that can be called up if necessary
by the physician. These two alterations will also have the
advantage of decreasing the load on the remote host (such
consultation programs are typically quite large).

One advantage that hardware-based designs for
terminals have over software-based designs is speed. For
example, primitive text-processing operations can typically
be executed more rapidly in hardware than in software.
Because some editing operations require more time than the
time between received characters, our terminal buffers
incoming characters. With a 1000 character buffer we are
able to operate the terminal regularly on a high-speed line
(4800 bps.) without noticeable delays in processing
characters, even when using the screen-oriented editors
that rely upon high transmission rates and extensive use of
terminal editing primitives. The lengthy execution times of
some of the terminal functions--scrolling is the slowest at 47
msec.--are primarily a result of the way in which we have
organized the display memory--as a normal portion of the
address space of the processor. Thus, 1840 characters
must be moved, and 80 characters must be entered for each
scroll. It is possible, however, to reduce the scroll time to of
the order of 1 msec. if a line-oriented organization is adopted.
A table of starting addresses for individual lines of
characters is stored in a separate portion of the display
memory. The remainder of the memory holds the characters
to be displayed on individual lines of the display. The display
circuitry then scans the table to pick up the start addresses
of lines to be displayed and retrieves the appropriate bytes
from addresses following the start addresses for the lines
(the processor must be locked out during the access time for
each of these addresses). For a 24-line display, the new
scroll function entails entering 80 characters and altering 23
addresses. The trend toward faster memories and
microprocessors indicates that speed will be even less a
problem for future designs.

 439

4.2 The System as a Microcomputer
An important byproduct of basing a terminal on a

microprocessor is the possibility of using the microprocessor
for independent computation, Since any terminal must be
connected to a high quality display, and must be connected
to a host computer, the major expenses typically associated
with stand-alone microcomputers (i.e., an associated terminal
and mass storage) pose no additional cost to the
microprocessor configured as a terminal controller. The
capability to download and upload data between the host and
terminal allows the host to provide mass storage facilities for
the microcomputer. Even large microcomputer programs
represent only a small burden in terms of disk use on a
typical host.

Thus, the microprocessor configured as a terminal
controller is ideally suited for use as a general-purpose
microcomputer with mass storage and software development
facilities (tex t editors, cross assembler, and downloader)
available on the host. The use of the microprocessor for
stand-alone computation could also reduce the computing
load on the host by performing computations that it would
normally perform. Mass storage facilities on the host allow
maintenance of several sets of terminal software,
corresponding to alternate definitions of terminal
characteristics available to the user. At the same time, the
use of mass storage on the host for storing microcomputer
software allows easy sharing of programs developed by
different users with terminals connected to a common host.

There is a great deal of interest in using the
microprocessor-based terminal for local text editing to
decrease the load on the host computer and free the user
from the frustrations of high-load editing (e.g., long and
unpredictable delays). There is no doubt that current
microprocessors are sufficiently powerful to handle the
editing function, given a suitable local file system. However, the
local file system must be carefully designed. The file systems
of most large-scale host computers are designed to enable
recovery in case of failure and are periodically backed-up.
Thus, the user operates in a relatively safe and f o r g i v i n g
environment. It follows that he will expect such features in the
local file systems of future terminals.

Another possibility that may be explored is shared
editing, wherein most editing is done by the terminal, in close
contact with the host; that is, the host is used for periodic
storage and retrieval of pages. This approach is complex and
warrants further experimental study to determine whether it
can reduce the load on the host while remaining transparent
to the user.

4.3 Suggestions for Future Designs

We believe that the following features are essential for
video terminals, especially for those that are to be used for
t e x t editing.

1. The video display must support lines with (at least) 80

characters. The more easily implemented 64 is simply
not sufficient for text editing; most text uses 72 or more
characters. A shorter line length only leads to
awkwardness for the user.

2. The video display must support (at least) 24 lines. This
number is currently a standard of sorts, but more lines
are always useful. Even when screen-oriented editors
use fewer lines, the extra lines on the screen can be
used by local programs (or for display of terminal status
information as has been done in the terminal designed by
the authors).

3. Variable display modes, such as underline, normal/inverse
video, blinking, and dual intensity, are essential. Editors

can make effective use of different display modes to
indicate different editing modes or type styles. TV-Edit,
for example, uses a double intensity I to indicate that
insert mode is in effect. E uses double intensity to
indicate lines that have been attached for movement
elsewhere in a file.

4. Because of the utility of different display modes for
editing functions, the most useful cursor is one that
underlines the character and blinks. It should be XORed
with the character video signal so that it shows up even
for characters displayed in inverse video, and it should
blink at a different rate than the character blinking rate
so that it is also easily located for characters displayed
in that mode.

5. A high-quality, properly human-engineered keyboard is
essential.

6. The keyboard must afford a convenient method for
specifying editing commands. One common method is to
have a special edit key which, when depressed, turns on
the eighth bit of any character typed, thus signaling an
editing command.

7. An alpha-lock is similarly essential for interaction with
many programming systems (e.g., Interlisp).

8. A local test mode is essential for isolating faults that
originate with the terminal, as opposed to those that are
due to the line or the host.

9, There should also be an audio indicator, preferably with a
pleasant (perhaps interesting) sound and a volume
control.

These features have all been essential hardware features.
The following are essential software features.

10. Character and line insert and delete.
11. Erasure to end of line.
12. Blank the screen.
13. Cursor addressing, both relative (up/down, left/right),

and absolute (to a specific position).

The following are desirable features. First, the hardware
features.

1. The display mode should be selectable for individual

characters.
2. Variable type styles, as well as display modes, should be

accessible, especially with the increased availability of
output devices capable of producing such type styles
(such as the graphics printer on which this paper was
produced).

3. Multiple cursors (or an underline display mode) are
desirable to indicate editing of different portions of text
on the same screen.

4. There should be the ability to locally store and recall
multiple lines or screens (for later transmission to the
host).

5. The capability to mix separately generated characters
and graphics on the screen would be very useful.

6. The ability to accept remotely generated video (perhaps
to superimpose), which is used effectively at the
Stanford Artificial Intelligence Laboratory to allow
multiple users to share screens of data [McCarthy,
1967], is another useful feature.

7. An input device (e.g., the SRI mouse) can be used
effectively for editing (as a pointer to locations on the
screen).

8. Extra keys on the keyboard are a useful feature. These
can be associated, for example, with the customized
macros previously discussed.

 440

9. The keyboard should be separated from the display,
logically as well as physically.

10. Although speed is not a major problem, all primitive
text-processing operations should require less than 1
msec. (approximately 1 character time at 9600 bps.) for
completion. This feature would reduce or eliminate the
need for buffering characters received from the host
computer (see Section 4.1).

11. The speeds of the transmit and receive lines should be
variable and independent (e.g., to support the 1200/150
bps. format in common use at ARPAnet sites).

12. If local editing is to be pursued (see Section 4.2), then
local mass storage (e.g., floppy disks) is required.

The following are desirable software features.

13. Home cursor (top left of screen). ,
14. Erasure to end of screen (by lines).
15. Split screen modes and protected fields (e.g., for editing

multiple files, or one file in different places)
16. Functions typically associated with the front panel of a

computer--e.g., load/examine/deposit, and low-level
debugging (an extension to the local test mode
mentioned earlier).

17. Local editing: line editing and file editing (see the
discussion in Section 4.2).

18. Macro definition (see the discussion in Section 4.1).

These lists of essential and desirable features indicate
some trends in the underlying hardware required to support
them. The remainder of this section discusses our thesis that
future microprocessor-based terminals will use processors
that have longer words than the 8 bits common today. We
argue that 16 bit processors have a useful role in future
designs, and we demonstrate some ways in which the added
length can be effectively utilized.

Aside from the increased processing power of 16-bit
microprocessors, the extra 8 bits per word are desirable for
the display memory. Remembering that selectable display
modes for individual characters was one feature where
compromise was forced because of the 8-bit word length, we
see a clear need for longer word-lengths. A 16-bit word, for
example, makes such modes possible, as well as the other
desirable features listed above (for the video display),

Figure 4.1 shows one possible organization for a 16-bit
word in a video terminal. We assume that the host still
transmits 8-bit characters to the terminal, occasionally
transmitting 2-byte sequences per displayed character.

Bits Function
0-6 character code
7-9 type style

10-12 display mode
13-14 matrix position

15 cursor

Figure 4.1. 16-bit Word Organization.

Bits 0-6 are used for the character code. Bits 7-9
indicate one of 8 possible type styles (i.e., fonts or character
sets) for the character (8 is a compromise that could be
adjusted either way). Variable type styles can be
implemented with different character generators (for a
predetermined selection of styles) and/or software-
programmable memories (for dynamically alterable styles).
Note that we are assuming that all type styles are such that
the characters fit in the same display matrix (e.g., 7 x 16). We
assume that if styles of different sizes are desired then

a bi t -map video display is a more appropriate way to
implement them (see, for example, [Baskett, 1976]).

Bits 10-12 encode the display mode (e.g., one of the 8
combinations of normal/inverse video, blink, and dual
intensity). Bits 13-14 encode the position of the character
within the display matrix. The intent here is to allow
subscripts and superscripts. We assume that the display
matrix is larger than that required for any character that is to
be shifted in this way (as it is in our current terminal design).
Bit 15 indicates a cursor is to be displayed under the
character--multiple characters can be underlined in this way.

5 Summary
We have discussed basic considerations for

microprocessor-based terminals and illustrated our points
with references to a terminal of our own design. We have
further discussed the advantages and disadvantages of the
software-based approach to terminal design and highlighted
essential and useful features for inclusion in future designs.

Finally, we have discussed the advantages of close
interaction between a remote host computer and a
terminal/microcomputer that this approach makes possible:
for customizing the terminal and simplifying software
development for the microcomputer.

References

[Baskett , 1976]

F. Baskett and L. Shustek, The Design of a Low Cost
Video Graphics Terminal. STAN-CS-76-546, Dept. of
Computer Science, Stanford University, February 1976.

[DATAMEDIA, 1976]
DATAMEDIA, ELITE 2500 Technical Manual. Pennsauken,
N.J.: DATAMEDIA Corporation, 1976.

[Flexer , 1978]
J. R. Flexer and G. Wiederhold, A Building Block
Approach To High Quality Graphics. Computer, 1978, in
press.

[INTEL, 1974]
INTEL, MAC 80 Reference Specification: 8080 Macro-

Assembler. March 1974.
[Kanerva, 1975]

P. Kanerva, A User's Guide To Tec/Dalamedia TV-
Edi t (revised edition). Institute for Mathematical Studies
in the Social Sciences, Stanford University,
October 1975.

[McCarthy, 1967]
J. McCarthy, D. Brian, G. Feldman, and J. Allen, THOR--a
display based operating system. SJCC Proceedings, Vol.
30, Montvale, N. J.: AFIPS Press, 1967. Pp. 623-633.

[Reiser, 1976]
J. F. Reiser (Ed.), SAI L . STAN-CS-76-574 (AIM-289),
Dept. of Computer Science, Stanford University, August
1976.

[Samuel, 1978]
A. L. Samuel, and B. Harvey, E Manual (rev. ed.).
Stanford Artificial Intelligence Laboratory, Stanford
University, 1978.

[Short l i f fe , 1976]
E. H. Shortliffe, MYCIN: Computer-Based Medical

Consultations. New York: American-Elsevier, 1976.
[Waterman, 1978]

D. A. Waterman, Exemplary Programming. In D. A.
Waterman and F. Hayes-Roth (Eds.), Pattern-Directed
Inference Systems. New York: Academic Press, 1978. Pp.
261-279.

 441

