
 
 

Inconsistencies in a user interface arise primarily when implicit 
knowledge about individual applications is encoded. Separation of user 
interface from applications, together with declarative descriptions of 

applications, offers a solution. 
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One of the problems that often faces the user of a large 
software system is a lack of uniformity or consistency in 
the user interface. Responses that elicit the desired system 
behavior in one context may fail completely in another— 
often accompanied by an obscure error message. As a 
result, the user may be well aware that the user interface is 
a disparate collection of programs written by different 
programmers, each with a different view on interface 
design. 

A related problem faces developers of an application in- 
tended to fit into an existing system. All too often they 
have to construct “system-tailored,” low-level user inter- 
face routines, usually without the benefit of the facilities 
and documentation available to the original system 
developers. This situation almost encourages the disorder 
and inconsistency that so often plagues an end user. 

We have adopted the view that these problems arise 
primarily when implicit knowledge about individual tasks 
is encoded in the user interface. What results is an unclear 
separation between actual computations involved in the 
execution of a task and data acquisitions (often from an 
end user) needed to execute a task. We have therefore ex- 
perimented with a system design in which the user inter- 
face has a minimal a priori knowledge of individual tasks. 
The interface has facilities for acquiring data using interac- 
tion mechanisms relevant to a particular task domain but 
has no knowledge of any particular task in that domain. 

To effect this separation, we have used hierarchical, 
symbolic descriptions of computation of the type that has 
been applied in automatic programming,1 fault diagnosis,2 

and digital hardware design.3 These descriptions incor- 
porate a modular, object-oriented encapsulation of the in- 
formation necessary to execute a task, an explicit represen- 
tation of control and data flow, a formal description of the 

function, and the facilities for viewing computation at a 
number of levels of abstraction. Existing formalisms, 
however, have not been generated with the user interface 
in mind. 

Several types of input data information are usefully 
added for the purpose of structuring the user interface. 
For example, producing extensive descriptions of input 
data for the user interface has a two-fold result: the 
descriptions function as both constraints on the input data 
and as guidelines to the user interface concerning ap- 
propriate interaction mechanisms. The advantages of this 
approach to user interface design are: 

(1) It leads to greater uniformity in end-user data ac- 
quisition because the user interface is the only part 
of the system that makes the ultimate decisions 
about how to acquire data. Thus, users are pre- 
sented with a more consistent view of the suite of 
programs with which they are interacting; 

(2) Information that specifies constraints on the data 
can be used both by the user interface (to make sure 
that the end user supplies valid data) and by the 
system, itself (for integrity maintenance), which 
leads to economy of mechanism; and 

(3) Addition of a new application to the system is 
simplified. The application developer does not have 
to be concerned with either writing user-input 
routines or altering the user interface. (This is true 
as long as the overall system is still operating in the 
same general applications domain—so that the 
types of interaction already built in are sufficient.) 
There is a clear separation between the role of the 
underlying system and the individual applications 
that are to operate within that system. 
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We can further illustrate the types of input data infor- 
mation used to structure the user interface by focusing our 
attention on a single task domain. For purposes of exposi- 
tion, we will consider the problem of interpreting oil-well 
logs. The efficient location and production of hydrocar- 
bons from an underground formation requires a great deal 
of information about the formation, ranging in scale from 
the size and shape of the rock’s pore spaces to the size and 
shape of the entire reservoir. Some of this information can 
be inferred form oil-well logs. These logs contain data col- 
lected from instruments (called tools) lowered into the 
borehole; measurements are recorded as the tools are 
raised to the surface. Logging tools measure a variety of 
basic petrophysical properties such as the resistivity of the 
rock surrounding the borehole. The resulting logs are se- 
quences of values indexed by depth. 

Log interpretation is concerned with determining other 
kinds of information from these basic measurements, such 
as lithology—the set of minerals (and their relative 
volumes) that make up the rock around the borehole—and 
reservoir geometry and structure. Most of today’s log in- 
terpretation programs apply numerical models to log data 
collected at the borehole over a number of intervals. In 
order to guide these interpretation programs, the end user 
must select appropriate models to be applied, the intervals 
over which they are to be applied, and a variety of param- 
eters that specialize the models to the specific geologic en- 
vironment around the well to which they are applied. 

Our declarative task description formalism has been 
used in the construction of an interactive log-interpre- 
tation system, called Crystal. This system manages all data 
about a set of wells, the logging tools that have been used, 
and the log data. It leads a human interpreter through the 
process of interpreting the data and generating displays of 
the results. The system forms a substrate for end users to 
do interactive log interpretation and for application devel- 
opers to write new interpretation methods. 

We are by no means the first to suggest that the user in- 
terface should be a cleanly separated module.4 Further- 
more, we are not the first to recognize the utility of 
declarative task description. We do, however, illustrate 
the advantages to be gained by combining these two ideas 
in the context of an implemented system. 

tasks; and (4) description of input and output data (such as 
data flow and data specification). 

In general, the focus of prior work in this area has been 
the description of the computation carried out in a task in 
terms of mappings between input data and output data. 

The Rutgers Al/VLSI group3,5,6 has used extensive 
descriptions of the input and output data for digital 
modules. Its descriptions are intended to represent the 
operating conditions of a module (that is, what must be 
true of the input data for the module to be executable) and 
the behavioral specification of a module (that is, the rela- 
tionships between the input data and the output data). 
These descriptions are used in concert with constraint 
propagation techniques to propagate constraints between 
specifications and behaviors, and with a body of circuit 
design rules to construct detailed designs from abstract 
specifications. 

Genesereth7 has used a predicate-calculus encoding of 
similar information in a system to diagnose faults in digital 
hardware. This system proves the correctness of circuits by 
showing that their behaviors, inferred from the behaviors 
of their components, satisfy their specifications. This is 
done with a resolution-based theorem prover. Barrow8 

has written a Prolog program with a similar purpose. 
Davis et al.2,9 use networks of dependencies between con- 
stituents of digital circuits to simulate the behavior of the 
circuits and isolate faults. 

The MIT Programmer’s Apprentice group 1 has 
developed a formalism intended to facilitate modifications 
to existing programs by providing documentation about 
design decisions leading to these programs, and by detect- 
ing inconsistencies between these decisions and proposed 
modifications. This formalism, called Plan Calculus, also 
provides a library of standard constructs for program 
development. It borrows from control flow charts, data 
flow schemas, abstract data types, and program transfor- 
mations. The user can construct or modify abstractions, 
or plans, of programs by using a diagrammatic notation. 

The information that we encode indicates our rather 
different purpose: that of providing instructions to a user 
interface—information from which the user interface can 
derive appropriate interaction mechanisms. Our interest 
leads us to concentrate on control flow, task/subtask rela- 
tionships, and, chiefly, on data description. 

 

Prior usage of declarative task description 

Declarative task description has been used for a number 
of purposes: to capture hardware design and program 
development; to aid in diagnosing failures in digital cir- 
cuits; and to verify the correctness of digital hardware 
designs. It permits answers to questions such as “What 
would be the output for this input?” “What is the role 
of this component in this circuit?” or “Is this module 
operating correctly?” It provides more support for 
reasoning about tasks than the empirical associations en- 
coded in the rules of rule-based expert systems. 

A declarative task description must capture (1) the com- 
putation carried out in each subtask (or subcomponent) of 
an overall process; (2) the relationships between tasks and 
their subtasks; (3) the control flow between tasks and sub- 

The declarative task description encoding 

We are using declarative task description as a means of 
providing a well-structured interface for the end user and 
the applications developer. Our encoding formalism con- 
cerns data flow, control flow, and task/subtask relation- 
ships. 

In our formalism, individual tasks are called modules. A 
module may be decomposed into expansions that repre- 
sent its subtasks. Each module has a number of 
ports—either input or output ports—that specify the data 
that flow into the module and the data that are generated 
by the module. 

We have encoded modules as objects in a structured ob- 
ject representation language called Strobe.10-12  They are 
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subclasses of the class object module.* A module class ob- 
ject describes a type of task; a module instance object 
describes a particular execution of a task. The attributes, 
or properties, of a module (for example, its ports) are en- 
coded as slots. Each slot is further described by a series of 
facets. For example, a slot is noted as being a port by 
giving it a Role facet whose value is port, and a Direction 
facet whose value is either In or Out. 

The Eigen module shown in Example 1 is part of 
Schlumberger’s Faciolog lithology interpretation module.13 

We show here only some of the information associated 
with the module. Additional information will be discussed 
in later sections. 
Object: Eigen 
Type: Class 

Generalizations: Module 
Well: 

Role: Port Direction: In 
Active-Logs: 

Role: Port Direction: In 
Passive-Logs: 

Role: Port Direction: In 
Top-Depth: 

Role: Port Direction: In 
Bottom-Depth: 

Role: Port Direction: In 
Weights-On-Active-Logs: 

Role: Port Direction: In 
Zones: 

Role: Port Direction: In 

Weights-On-Zones: 
Role: Port Direction: In 

Log-Means: 
Role: Port Direction: Out 

Log-Standard-Deviations: 
Role: Port Direction: Out 

Eigen-values: 
Role: Port Direction: Out 

Eigen-vectors: 
Role: Port Direction: Out 

PC-Logs: 
Role: Port Direction: Out 

Code: Eigen-Procedure 
Return-Control: Eric-Prime Module Keyest 
Control ‘ (1) 
The task of Eigen in the overall computation is to per- 

form a principal component analysis on the Active-Logs 
for Well from Top-Depth to Bottom-Depth. The main 
output is a set of principal component logs, PC-Logs in 
Example (1), which are projections of the normalized ac- 
tive logs onto principal component axes. Once the prin- 
cipal component logs have been determined, a later part of 
the computation determines vertical sections of the 
borehole that are statistically similar. Finally, lithological 
names are assigned to vertical sections of the borehole 
(such as sand and shale). Figure 1 shows a sample inter- 
pretation. 
*We will describe only features of Strobe germane to the present discussion. 
Readers interested in a more detailed discussion of Strobe are directed to the 
references. 

 
Figure 1. A sample lithological interpretation. The left channel shows a gamma ray log (which measures natural gamma radiation in 
the formation) plotted together with a spontaneous potential log (which measures variations in potential between an electrode 
lowered into the borehole and a reference electrode at the surface). The right channel shows the final interpretation of the interval. 
Each different lithology is shown by shading. The lithology textures are bounded by the spontaneous potential log, as is common 
for geologists. 
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Control flow. In keeping with our desire to encode no 
task-specific information in the user interface of our 
system, we use a single procedure to execute all modules. 
The following is a schematic description of the procedure. 

Procedure Module-Control (Module) 
Acquired Data For Input Ports 
If Expansions Exist 
Then 

Instantiate Expansions 
Set Up Control Flow Information For Expansions 
Module Control (First Expansion) 

Else Execute Module Computation 
Module-Control (Next Module) (2) 

This procedure is invoked by sending a message to the 
Control slot of the instantiation of the module. This has 
the effect of invoking the procedure found in the slot.† 
The message handler for the control slot is always in- 
herited from the module class object. 

The actual code to be executed to carry out the com- 
putation associated with the module is found in the code 
slot. In the Eigen module, Example (1), Eigen procedure 
makes the computation. 

The Return-Control slot contains the address of the 
continuation of the module; that is, the module that gains 
control after the current module has been executed. In 
Eigen, its value is interpreted as “Continue execution by 
sending a message to the control slot of the Keyest object  ‡ 
†This type of indirect procedure invocation (by address rather than by 
name) is standard in object-oriented programming languages. 
‡Keyest is the name of a program that performs clustering on the results of 
the principal component analysis, which is performed by Eigen. 

in the module knowledge base on the network host 
machine called Eric-Prime.” 

Task/subtask relationships. Example 3 illustrates the 
encoding of task/subtask relationships between modules. 
It is drawn from the Dipmeter Advisor system.14 This 
module represents the Validity-Analysis phase of the inter- 
pretation (We show only slots relevant to this discussion). 
Validity-Analysis expands into three modules (subtasks): 
Blanks, which finds zones in the well where no dip 
estimates could be made; Washouts, which finds zones 
where the borehole has collapsed; and Mirror-Images, 
which finds zones where an electrical disturbance has in- 
validated tool measurements. The expansions are executed 
in the order indicated by the Order facets. Expansions with 
the same integer in this facet may be executed in parallel. 
Validity-Analysis is, itself, an expansion of the Dipmeter 
Interpretation module. When Validity-Analysis is instan- 
tiated, the Blanks, Washouts, and Mirror-Images slots are 
filled with the instantiations of the expansion modules. 

Object: Validity-Analysis 
Type: Class 

Generalizations: Module 
Blanks: 

Role: Expansion Order: 1 
Washouts: 

Role: Expansion Order: 2 
Mirror Images: 

Role: Expansion Order: 3 
Dipmeter-lnterpretation: 

Role: Abstraction (3) 

  



There is no Code slot associated with the Validity- 
Analysis module. For simplicity, we have adopted the con- 
vention that code may only be associated with modules 
that do not have expansions. We call these modules 
primitive. 

Note that when expansions are instantiated, the Return- 
Control slots of the instantiations must be filled (usually 
with sibling expansion instantiations). The last expansion 
must return control to the parent module. 

Data Description. In this section, we discuss the types of 
information that can be provided by an application 
developer, and the ways in which this information can be 
used to provide a consistent interface to the end user. The 
viability of a user interface that does not encode explicit 
task-specific information depends critically on the 
language used to communicate the intentions of the ap- 
plication developer. The language must capture the scope 
of natural user interactions in the domain of application. 

Data descriptions are contained in facets of the ports 
through which the data flows. Application developers 
must specify a variety of information about ports. This in- 
formation falls into three basic categories: (1) specification 
of how data flows through ports and between modules, (2) 
constraints on valid input port values, and (3) advice to the 
user interface about appropriate mechanisms for acquir- 
ing data from an end user. 

Dataflow. The facets that deal with data flow are Direc- 
tion, Order, and Origin. As we have noted, the Direction 
facet indicates whether data flows into or out of the port 
with which it is associated. The Order facet indicates the 
relative order in which input ports must be filled (partial 
orders are allowed). This is to allow for the existence of 
dependencies between values selected for one input port 
and those chosen for other input ports. In the examples to 
follow, many of the expressions to be evaluated contain 
free variables in the form of port names. The binding en- 
vironment for ports associates port names with their 
values in these expressions. Ordering ensures that ports 
referred to in this way will have values when required. 

The origin facet indicates how the data for a port value 
can be obtained. Three possibilities have been found 
useful: 

(1) The data is produced by the module, itself. 
(2) The data is found in another module. In this case, 

the Origin facet contains a path to the data. For in- 
stance, Keyest is an expansion of the Faciolog 
module. It is executed after the Eigen module dis- 
cussed earlier. Keyest has a Bottom-Depth port 
whose data is found in the Bottom-Depth port of 
Eigen. The Origin facet contains the expression 
(Bottom-Depth-Eigen-Faciolog). This is interpreted 
as “The origin of the Bottom-Depth port of the cur- 
rent Keyest is the Bottom-Depth port of the Eigen 
expansion of the current Faciolog.” 

(3) The data is obtained from the end user. 
Constraints on port values. The facets used to specify 

constraints on port values are Datatype, Candidates, 
Predicate, and Set-Predicate. They can be used both by a 
user interface and by a system integrity maintenance 
mechanism. 

The Datatype facet is used to express constraints that 
are independent of the particular module with which the 
port is associated. The facets associated with the Active- 
Logs port of Eigen, for example, are shown in Example 4. 
The datatype of this port is Log. This means that the port 
value may be a Log or a set of Logs. It indicates that the 
value (or its elements) must obey all of the defining 
characteristics of the Log object. * 
Object: Eigen 

Active-Logs: 
Role: port 
Direction: In 
Origin: User 
Order: 2 
Datatype: Log 
Minimum-Cardinality: 1 
Maximum-Cardinality: 30 
Candidates: (Message Well 'Logs) 
Set-Predicate: (< = (for Log in Active-Logs count 

                                     Log when (Generalization? Log 'Gamma- 
                                     Ray)) 1) 
Set-Predicate-Error-Message: "You cannot select more than one 
gamma ray log." 

Bottom-Depth 
Role: Port 
Direction: In 
Origin: User 
Order: 5 
Datatype: Depth 
Predicate: (> Bottom-Depth Top-Depth) 
Predicate-Error-Message: "The Bottom-Depth 

must be greater than the Top-Depth." 
Default: (Message Active-Logs 'Bottom-Depth) (4) 

Restrictions associated with a particular datatype may 
reference other facets associated with the port (such as 
Minimum-Cardinality and Maximum-Cardinality). 

The Candidates facet contains an expression that 
evaluates to the set of valid alternatives. Active Logs, for 
example, must be drawn from the set of logs associated 
with the Well that has been selected for Eigen. (Note, here, 
the use of a free variable, Well, that is bound to the par- 
ticular well that has been selected.) 

The Predicate facet contains an expression that must 
evaluate to “true” for the port value to be valid. This facet 
encodes constraints that are specific to a particular port. 
For example, the value of the Bottom-Depth port of Eigen 
must be greater than the value of the Top-Depth port. 

When the port value is a set, the Set-Predicate facet en- 
codes constraints on the set, itself, and the Predicate facet 
encodes constraints that must be met by its elements. For 
example, the value of the set of Active-Logs of Eigen must 
be such that it includes only a single gamma ray log. 

The current system simply rejects port values that 
violate constraints. We plan to extend it to consider other 
actions in response to violations. 

Advice to the user interface. The remaining facets are 
used to provide advice to the user interface about ap- 
propriate interaction mechanisms for acquiring data from 
an end user. We expect that a user interface designed for 
interactions within a particular task domain can infer most 
of what it needs from the information just presented in 
 
*All Strobe slots have datatype facets. The operations and constraints that 
define a datatype are contained in an object in any knowledge base. 
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order to select an interaction mechanism. For example, we 
assume that the Datatype facet will suggest, in many cases, 
the appropriate interaction mechanism. It might lead, for 
example, to a keyboard interaction for acquiring port 
values with datatype Integer. Similarly, the Candidates 
facet information, together with the datatype, well, might 
suggest a menu interaction. 

The facets discussed here provide information for a user 
interface but cannot be inferred from the other facet infor- 
mation. They are Interact-For-Value, Default, Default- 
Or-No-Value, Help, Predicate-Error-Message, Set- 
Predicate-Error-Message, and Associations. 

The Interact-For-Value facet contains an expression 
that evaluates to true if the end user should indeed be 
queried for the port value. It allows for optional 
ports—those that are not always required to execute the 
module. 

The Default facet contains an expression that evaluates 
to a default value. The default must obey the constraints 
on the port value. 

The Default-Or-No-Value facet is used if the Interact- 
For-Value facet evaluates to false and there is a default. If 
Default-Or-No-Value evaluates to true, then the default 
will be used as the value. Otherwise, the port is considered 
to have no value. 

The Help facet contains an expression that evaluates to 
a help message in case the end users do not understand 
what is expected of them. 

Predicate-Error-Message contains an expression that 
evaluates to a message that can be used to reprompt end- 
users in the event they supply data that violates the 
Predicate constraint. Set Predicate-Error-Message plays a 
similar role with respect to the Set-Predicate constraint. 
Our current implementation is relatively crude. We intend 
to extend this mechanism to use information on how the 
constraints have been violated to generate the error 
message. 

The Associations facet identifies information whose 
association with ports is useful or necessary for selecting 
port values. Several kinds of information can be involved 
in such associations. This is another example of knowledge 
in the user interface about the particular task domain in 
which the system is intended to operate. 

In the log interpretation domain, parameters may be 
associated with particular logs—either because their values 
are to be selected from these logs or because the display of 
the logs is a helpful aid for the end user in selecting values. 
For the GRF/GRB-Zones port of the Bound-Water- 
Saturation module shown in Example 5* an association is 
made between this port and the GR port. In the Crystal 
system, the user interface notes that GRF/GRB-Zones has 
datatype Zone. Because it is tuned to the log interpretation 
domain, it knows that zones are most naturally entered by 
buttoning in a log display. From the association indicated 
between the GRF/GRB-Zones port and the GR port, the 
user interface determines that the particular log display 
from which the zones should be selected is a display of the 
GR log. Similarly, in the GRF and GRB ports of the same 
*This is an expansion of a module that performs volumetric analysis of the 
rock surrounding a borehole. It computes the value of the Bound-Water- 
Saturation of a zone from the gamma ray log. GRF refers to the value of the 
gamma ray log in pure sand, and GRB to the value of the gamma-ray log in 
pure shale. 

module, the user interface can use the associations 
together with its knowledge of the task domain to infer 
that GRF and GRB are most naturally selected by button- 
ing in a display of the GR log. In this case, however, the 
value to be returned from the display is the log value, 
rather than the depth values as in the GRF/GRB-Zones 
case. 

Another example of the utility of associations in the log 
interpretation domain involves port values associated with 
vertical zones in a borehole (that is, ports whose values 
vary from one zone of the borehole to the next). The 
zones, themselves, are also ports and provide indices for 
the zoned values. This indexing allows the user interface to 
identify all the ports indexed by the same zones. It can then 
ask the user to select the values of these ports at the same 
time. In the GRF and GRB ports of the Bound-Water- 
Saturation module, for example, the parameters GRB and 
GRF are indexed according to the same zone because their 
Associations facets point to the zone port GRF/GRB- 
Zones. Note, also, that the values of these two ports can be 
selected at the same time, as indicated by the fact that they 
have the same order. 
Object: Bound-Water-Saturation 

GRF/GRB-Zones: 
Role: Port 
Direction: In 
Origin: User 
Order: 3 
Datatype: Zone 
Default: (Message GR 

'Depth-Interval) 
Associations: ((Log . GR)) 

GRF: 
Role: Port 
Direction: In 
Origin: User 
Order: 4 
Datatype: Radio-Activity- 

Measurement 
Default: 10.0 
Associations: ((Log . GR) 

(Zones . GRF/GRB-Zones)) 

GRB: 
Role: Port 
Direction: In 
Origin: User 
Order: 4 
Datatype: Radio-Activity- 

Measurement 
Default: 70.0 
Associations: ((Log . GR) 

(Zones . GRF/GRB-Zones)) (5) 

We have already noted that constraints on port values 
can be used both by the user interface to make sure that an 
end user has entered valid data and for integrity 
maintenance. It is worth noting that the complete flow of 
information associated with a port can be used to prevent 
costly integrity-maintenance checking when it is not re- 
quired. For example, it can be inferred that the checking 
normally associated with a particular datatype is not 
necessary when the value is selected from a set of can- 
didates and when the method used to generate these can- 
didates can be assumed sound. The same reasoning applies 
to defaults. 
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Interaction with the end user 

Figure 2 is a snapshot of Crystal running on a Xerox 
1100 series workstation during an interpretation session.† 

Commands are issued primarily through overlaying icons, 
much as in the Xerox Star user interface.15 Some icons 
represent devices, others represent interpretation tasks. In 
Figure 2, the user has placed the Compute-Facies icon on 
top of the Vax icon; in response, the system has started a 
Faciolog module, which contains the Eigen and Keyest ex- 
pansions. 

Each running task has its own terminal interaction win- 
dow. This window, divided into three sections, is com- 
prised of a menu listing the expansions of the module with 
indentations to represent expansion nesting; a menu of 
commands the user may issue to affect the execution of a 
†Crystal is implemented in Interlisp-D, a dialect of Lisp that includes win- 
dows, menus, and bitmaps as primitive datatypes. 

module; and a typescript and keyboard interaction region. 
As execution of a module progresses, a gray bar covers the 
expansion in progress in the expansion menu. The module 
structure leads the user through the interpretation. The 
user is prompted to supply input port values when 
necessary in the lower half of the window; values enclosed 
in brackets indicate defaults, which are obtained from the 
port descriptions. Menus appropriate for selecting sym- 
bolic parameters (such as names of wells or logs) often ap- 
pear connected the window; as discussed in the previous 
section, numeric parameter menus associated with log 
values appear near the appropriate log display. 

Two log displays appear across the top half of the screen 
(see Figure 2). On the left, the raw gamma ray and 
spontaneous potential logs are plotted in a single window; 
these logs served as input data for a Faciolog interpreta- 
tion. The results of this Faciolog execution are displayed 
on the right. In Figure 2, the system is querying the user for 
 

 
Figure 2. A snapshot of Crystal, running on a Xerox 1100 series workstation, during an interpretation session. The tail, partially 
obscured window on the right is the “Control Panel,” which serves to focus the user’s attention for the purpose of issuing com- 
mands. Commands are primarily issued through overlaying icons. In this example the user has placed the Compute Facies icon on 
top of the Vax icon; in response, the system has started a Faciolog module, which contains the Eigen and Keyest expansions. The 
Faciolog interaction window, lower center of the screen, contains (1) a menu listing the expansions of the module, (2) a menu of 
commands, and (3) a typescript and keyboard interaction region. The two log displays (see Figure 1) appear across the top of the 
screen. 
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Figure 3. Expansions of Dipmeter Interpretation. 

zone boundaries through a menu near the spontaneous 
potential log display. (If the user supplies a weight of 0.0 
for a zone, that zone will be ignored during the Eigen com- 
putation). At this point in the interaction, the system has 
already queried the user for the particular well of interest, 
the well-logs to be used in the computation, and the zone 
of interest (as delimited by its top and bottom depths). 
Two logs were, in fact, selected by the user. As a result, the 
system asked twice for Weights-On-Active-logs (one 
weight for each log). Help messages are generated in 
response to the question. 

 

Figure 4. Eigen as depicted by the module editor. 

Interaction with the application developer 

Impulse, the primary tool we provide to an application 
developer, permits rapid, interactive construction of col- 
lections of modules. * 

Interaction mechanisms. During a development session, 
the application developer often makes changes to several 
modules in concert. In the course of developing an ap- 
plication, changes to the control or data flow in one 
module may require corresponding changes in other 
modules. Impulse supports this style of editing by pro- 
viding simultaneous access to any number of editor win- 
dows. The editor automatically assumes the proper editing 
“context” when a command is issued in an editor window. 
This means the application developer need not keep track 
of the implicit editor state. Furthermore, in order to assist 
the developer to focus more clearly on individual contexts, 
Impulse partitions displayed information according to dif- 
ferent levels in the Strobe hierarchy (that is, Knowledge 
Base, Object, Slot, and Facet). For example, information 
pertinent to a particular module is restricted to a single 
editor window, information about other modules or about 
collections of modules appears in different editor win- 
dows. 

Comfortable interaction with the system is also impor- 
tant. We have observed that mixed mouse and keyboard 
interaction is awkward; a typical user prefers not to 
remove his hand from the mouse to type on the keyboard. 
We have therefore chosen to emphasize one style of in- 
teraction over the other; a menu-driven style of interaction 
offers major advantages over a multiple-keystroke-driven 
style. As a result, Impulse editing contexts are composed 
of windows, which contain information, and associated 
menus, which contain commands. In addition, a number 
of editing functions require the user to supply some 
keyword such as a module name. Wherever feasible, Im- 
pulse provides menu selection in these cases. In practice, 
the repertoire of editor commands available through 
menus has proved complete enough that developers rarely 
need to resort to typing. However, when typing is 
unavoidable, Impulse supplies spelling correction and par- 
tial name recognition. 
*Impulse is, in fact, the Strobe editor and is in common use throughout 
Schlumberger for development of knowledge-based systems. It serves much 
the same role in Strobe that the Browser does in Smalltalk.l6 
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A menu-driven approach does pose a problem: menus 
with many commands. These menus force the user to 
search for a desired command. They also consume 
precious screen space. We solved this problem in three 
ways: by partitioning command menus according to func- 
tion, by using pop-up subcommand menus for related, but 
more specific, commands, and by using fixed-height 
scrolling menus. 

Displaying knowledge-base structure. One of the most 
important facilities a knowledge-representation system 
editor can provide is a means of visualizing various rela- 
tionships in a knowledge base. Not only does visualization 
give the developer a grasp of the current state of the 
system, but it allows easy access to collections of inter- 
related objects for editing. Impulse satisfies this need 
through its facilities for generating graphics of interobject 
relationships. Three standard graph styles are built into 
Impulse; two trace taxonomic hierarchies, either by 
ancestry or by progeny links; the third follows “slot suc- 
cession,” that is, objects linked by a common slot name 
(for example, an object might contain a Parts slot contain- 
ing a list of subsidiary objects). The nodes of an Impulse 
display are live; buttoning a node which represents an ex- 
isting object opens an object editor window for that ob- 
ject. 

In addition to these predefined graphs, Impulse allows 
the user to specify graphs following any arbitrary relation- 
ship. The developer is prompted to define a primitive func- 
tion to return a node’s children; Impulse, itself, causes the 
function’s recursive invocation and collects the graph 
nodes as they are generated. As an example, in the Module 
knowledge base, the Expansions graph is produced by 
recursively calling a function which collects the names of a 
module’s Expansion slots. The resulting graph depicts the 
expansion hierarchy for a particular module in the 
knowledge base. Figure 3 is the Expansions graph of the 
Dipmeter-Interpretation module during development. 

Customized editor interfaces. Impulse was originally 
designed for developing large object-oriented systems in 
Strobe. We perceive much of its functionality to be un- 
necessary and distracting for the much simpler task of 
designing new modules within our formalism. A more ap- 
propriate interface for the applications developer is one in 
which the general Impulse menu-and-window structure is 
preserved, but whose display and command set creates and 
edits module descriptions. 

For this reason, Impulse was recently reimplemented to 
allow declarative representations of editors, themselves. 
Then it was simple to create a module editor that offered 
commands related specifically to editing modules and 
ports within the Crystal framework (see Figure 4). 

We have described the utility of declarative task de- 
scription as a way of structuring user interfaces for two 
types of user: the application developer and the end user. 
It has been shown that explicit representation of control 
and data flow, and hierarchical task/subtask relationships 
can be used to guide an end user through a complex com- 
putation and to provide a uniform framework for applica- 
tion developers. We have used extensive descriptions of in- 

put data for modules to advantage in specifying data flow, 
constraints on port values, and advice to a user interface. 

We have illustrated the utility of clear separation of the 
user interface from the modules described by application 
developers. The separation, however, is not total. En- 
coding task-specific information in the user interface 
makes it difficult to add new applications. However, tun- 
ing the user interface to a particular task domain enables it 
to use all the information in module data descriptions, in- 
cluding information not specifically intended for the pur- 
pose, to identify natural interaction mechanisms in that 
domain. 

The work that we have done fits into a larger con- 
text—that of constructing more versatile and robust expert 
systems. It is becoming increasingly important to integrate 
existing large, traditional interpretation programs (often 
involving application of numerical models) with advisory 
systems that typically employ symbolic methods. Early ap- 
proaches to this problem have involved writing production 
rules to guide the actions of the numerical programs and, 
to some extent, explain their actions. 17,18 One of the long- 
term goals that we are pursuing is improvement upon these 
approaches through the use of hierarchical structural and 
functional descriptions of the tasks that are carried out by 
an existing assemblage of programs. * 
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