

REPRESENTATION IN KNOWLEDGE-BASED SYSTEMS

Reid G. Smith

Schlumberger-Doll Research
Old Quarry Road

Ridgefield, CT 06877-4108
USA

AI Europa, Wiesbaden, Germany, September, 1985.

EXTENDED ABSTRACT

First generation knowledge-based systems (KBSs) typically used a single representational
paradigm–such as production rules–to meet all requirements. More ambitious goals have led
largely to the abandonment of this simple model. These goals include: (i) construction of
systems that encapsulate more aspects of human expert behavior; and (ii) reduction in the
cost of system construction and maintenance; and (iii) improvement of time/space
performance. As a result, current systems tend to use multiple representations–such as
objects, rules, constraints, tasks, and procedures–each tuned to handle specialized classes of
information and situations. A number of designers have found it advantageous to integrate the
different paradigms via an object-oriented foundation, or substrate.

To understand the utility of an object-oriented substrate, we consider the process of KBS
development. In current practice the transfer of expertise from a domain specialist to a
knowledge-based system involves a computer scientist intermediary–or knowledge engineer.
The specialist and the engineer discuss the domain in a series of interactions. During each
interaction, the engineer gathers some understanding of a portion of the specialist's
knowledge, encodes it in the evolving system, discusses the encoding and the results of its
application with the specialist, and refines the encoded knowledge. The process is a
painstaking one–expensive and tedious. As a result, one of the foremost problems that has
been identified for KBSs is the knowledge acquisition bottleneck.

For our purposes, we can observe that two sorts of software tools and methods are crucial to a
smooth KBS development scenario: (i) those that simplify the process of incremental system
refinement; and (ii) those that allow the domain specialist to interact directly to some extent
with the evolving system in order to: examine the knowledge base for gaps, weaknesses, and
misunderstandings; and expand, refine, and correct the encoded knowledge. Such tools have
the potential to increase the bandwidth of the interaction between domain specialist,
knowledge engineer, and system by allowing attention to be focused on the required domain
knowledge and problem-solving methodology–without being bogged down in programming
mechanics.

Object-oriented programming provides powerful assistance for the KBS developer. It has been
found to be an effective aid to the exploratory programming style that characterizes the
incremental refinement process of KBS development. One of the primary problems facing the
KBS developer is management of complexity in a dynamic environment. This is increasingly
true as KBSs are scaled-up to meet the demands of real-world problems. A powerful aid to
managing complexity is a clear conceptual model of the evolving system–a kind of
computational skeleton. In constructing a clear model, it is helpful to organize computation
around programming constructs whose internal structure and interrelationships explicitly reflect

1

http://www.rgsmithassociates.com/About.htm

those of constructs in the physical world in which the resultant systems are to operate. It is in
constructing such models that the object-oriented style excels. Furthermore, the object-
oriented style encourages modular code with well-defined interfaces through its use of
messages as an invocation form. Inheritance of properties simplifies code-sharing. This leads
to more space-efficient code and to ease of maintenance and alteration. In addition–and of
primary importance–the use of messages allows many traditional KBS representational
paradigms (e.g., rules, constraints) to be encoded as objects and invoked (via messages) in a
uniform manner.

A clear model of the evolving system is as important to the domain specialist as it is to the KBS
developer. Objects appear to be a natural and understandable knowledge organizing
mechanism to humans not normally involved in computation. The concept of a prototype for
encapsulating information–both data and procedures–is well-understood and used by humans,
as are the concepts of classes and instances, taxonomies–and taxonomic inheritance of
properties (along with a number of other forms of inheritance). In addition, a number of
powerful systems have been developed for easy graphical examination and extension of
knowledge bases. A keynote to these systems is that the domain specialist is able to express
himself and interact in the natural terms and notation of his domain.

In the first part of the presentation, we review our experience with an example of an integrated
knowledge-based system development environment based on an object-oriented substrate
and demonstrate the advantages of the approach.

We have been discussing the utility of an object-oriented substrate for reducing the knowledge
acquisition bottleneck by increasing the bandwidth of interactions between domain specialist,
knowledge engineer, and knowledge-based system. There are two intended effects: (i) a
reduction in the time/cost required for KBS construction and maintenance; and (ii) an increase
in the robustness and power of the resultant systems. There is a third potential payoff that
might accrue from the use of objects as a representational substrate. We are searching for a
representational substrate that will allow knowledge to be encoded in such a way as to permit
knowledge bases developed in the context of one application to be used almost as is in related
applications in the same domain. Indeed some aspects of the encoded knowledge bases
should be usable across domains. In the short term, this would enable amortization of the cost
of knowledge acquisition. In the longer term, it could lead to knowledge-sharing between
specialists–a kind of computational publication. Unlike the knowledge involved in traditional
journal publication, however, this knowledge will be computationally described, directly usable
knowledge. Such a development could have enormous implications and could vastly increase
the leverage of an individual domain specialist. It could greatly shorten the time delays
currently involved in making a new development the widely used standard practice.

In order to obtain the desired effect, we believe that architectural principles of knowledge-
based system design must emerge. The current practice in the field will not lead to the
advantages we seek regarding robustness, power, and cost of construction and maintenance.
Below, we list some candidate principles.

• A clear, expressive domain model is central.
• It is desirable to encode knowledge through abstract relations that are usable across

domains (e.g., part/whole, generalization/specialization, task/subtask).
• Knowledge should be partitioned wherever possible (e.g., into domain-independent,

domain-specific, and task-specific packets).
• Assumptions about the context in which knowledge will be used should be minimized.

2

• Control should be explicitly represented (i.e., strategy knowledge, problem-solving state,
and problem-solving history).

• Specialized representations are essential (e.g., objects, rules, constraints, tasks,
procedures) for high performance. They must be integrated.

• User interaction should be considered as an integrated component.

In the second part of the presentation, we discuss these principles and the utility of object-
oriented programming in following them.

3

Representation
in

Knowledge-Based Systems

Reid G. Smith

Schlumberger-Doll Research

Old Quarry Road
Ridgefield CT, 06877-4108

USA

1 RGS/September 1985

Themes

• State of the art knowledge-based systems

orchestrate multiple representational paradigms

• An object-oriented substrate offers useful tools

for integration of the different paradigms

• Architectural principles of knowledge-based
systems are emerging

• An object-oriented substrate helps developers

follow the principles

2 RGS/September 1985

Impacting
the

Knowledge Acquisition Bottleneck

➭ KNOWLEDGE ENGINEERING TOOLS

• Assist the Knowledge Engineer and Domain

Specialist to Focus on the Domain Knowledge
and Problem-Solving Methodology

• Simplify the Incremental Refinement Process

• Allow Direct Interaction by the Domain

Specialist

 … Expression and Interaction in Domain Terms

• Amortize KB Construction Cost via Knowledge

Sharing

 … Architectural Principles

 MACHINE LEARNING TECHNIQUES

 • Learning Apprentice Systems

3 RGS/September 1985

Structured Object Representation

• Modularity: Encapsulation of Properties and

 Behavior

• Specialized Procedure Invocation via Messages

• Abstraction: Taxonomic Hierarchies…
• Inheritance of Properties

• Event-Driven Procedure Invocation

 … Useful for Managing Complexity

• Prototypes: a Natural and Understandable
 Knowledge Organizing Mechanism

• Computational Skeleton: Structure for the

 Reasoning System

• Messages: a Universal Invocation Mechanism

4 RGS/September 1985

5 RGS/September 1985

6 RGS/September 1985

7 RGS/September 1985

8 RGS/September 1985

Hearsay II

9 RGS/September 1985

10 RGS/September 1985

Strobe Datatypes

11 RGS/September 1985

Strobe

12 RGS/September 1985

Strobe Summary

• Knowledge Bases, Objects, Slots, Facets

• Tangled Taxonomic Hierarchies
• Class/Instance Distinction
• Flexible Slot/Facet Inheritance with Caching

• Procedural Attachment: Invocation via Message
• Datatype Forwarding

• Event-Driven Procedure Invocation
• Object/Slot Creation/Deletion
• Slot Value Access/Alteration [before/after]

• Groups: Arbitrary Object Collections

• Multiple Resident Knowledge Bases

• Multiple Machine/Language Operation

• Object/Slot Synonyms

• Description Object Instantiation

13 RGS/September 1985

Individual Rule Object

Object: NormalFault9
Generalizations: Rule

If: (Condition1 Condition2)
Then: (Action1 Action2)
Condition1: (ThereExists z NormalFaultZone)
Condition2: (ThereExists p RedPattern

($< p.Length RedLength)
($Above p z)
($Perpendicular p.Azimuth z.Strike))

Action1: ($Specialize z 'LateFaultZone)
Action2: ($Assign 'DirectionToDownthrownBlock z

p.Azimuth)
Translation:

If
1. there exists an instance of the class

NormalFaultZone (z), and
2. there exists an instance of the class RedPattern (p)

such that the Length of p < RedLength, and
such that p is above z, and
such that the Azimuth of p is perpendicular to the

Strike of z
Then

1. specialize z to be a LateFaultZone
2. the DirectionToDownthrownBlock of z

← the Azimuth of p

14 RGS/September 1985

Individual Rule Object

Object: Tidal1
Generalizations: Rule

…
Translation:

If
1. there exists a Transition/InnerShelfZone (z)

such that the influence of z is Wave/Tide, and
2. there exists a set of BluePatterns (p)

such that each new element of p is within z, and
such that each new element of p is below the last

element of p, and
such that the Azimuth of each new element of p is

opposite to the Azimuth the last element of p, and
such that the size of the set p > 1

Then
1. create a TidalFlatZone (tz)
2. the Top of tz ← the Depth of the first element of p
3. the Bottom of tz ← the Depth of the last element of p
4. the Axis of tz ← the Azimuth of the last element of p

15 RGS/September 1985

Rule Class Object

Object: Rule
Generalizations: Object

If:
Then:
Ruleset:
Translation:
Apply: ApplyRule
Match: MatchRule
MatchAll: MatchRuleAll
Execute: ExecuteRule
Translate: TranslateRule

16 RGS/September 1985

Individual Ruleset Object

Object: DeepMarineRuleset
Generalizations: Ruleset

NormalRules: Marine-20 Marine-21 Marine-22
ControlStrategy: ReStartAfterFiring

17 RGS/September 1985

Ruleset Class Object

Object: Ruleset
Generalizations: Object

NormalRules:
FireOnceRules:
FireAlwaysRules:
ControlStrategy:
Termination Condition:
KnowledgeBase:
Apply: ApplyRuleset
ApplylnProcess: ApplyRulesetlnProcess

18 RGS/September 1985

Constrained Object

Object: WellLocation
Type: Class
Generalizations: Object

Well:
TOWN: {Township}
STAT: {State Province}
NATI: {Nation Country}
CONT: {Continent}

Value:
Datatype: Expr
Candidates: (Europe North-America South-America

Asia Africa Australia)
Constraints: (MembershipConstraint)

19 RGS/September 1985

Single Slot Constraint Object

Object: MembershipConstraint
Generalizations: SingleSlotConstraint

If {Condition}: (Condition1)
Then {Correction}: (Action1)
Condition1: (NOT (MEMBER Value Candidates))
Action1: (ERROR Value "is not one of:" Candidates)

SetOrElementConstraint: Element

20 RGS/September 1985

Datatype Object for Integrity

Object: Datatype
Generalizations: Root

Datum-Get: StandardGetHandler
…
Datum-Put: IntegrityPutHandler
Datum-Add: IntegrityAddHandler
Datum-Remove: IntegrityRemoveHandler
…

21 RGS/September 1985

Impulse: An Extensible and Interactive
 Knowledge Base Editor

• Reactive Environment

• Customized Presentation and Interaction

• Flexible Display of Knowledge Base
 Structure

22 RGS/September 1985

23 RGS/September 1985

24 RGS/September 1985

25 RGS/September 1985

26 RGS/September 1985

MODULAR INCREMENTS TO STROBE

• Impulse
- Strobe-based KB editor
- Customizable

• Rule Interpreter
- Rule Debugging Package
- Rule Editor (Impulse-based)

• Constraint Package
- Semantic Integrity Management within and

among objects

• Object File Management (KBMS)
- Indexed non-resident object files

• Declarative Task Representation
- Control and data flow among modules
- User-interface information

27 RGS/September 1985

SUBSTRATES

28 RGS/September 1985

KBS Architectural Principles
(Davis, 1982)

Separate the Inference Engine and Knowledge Base

• What Is True vs How to Use It

Use as Uniform a Representation as Possible

• Specialization Is Often Worth the Cost of Translation

Keep the Inference Engine Simple

Exploit Redundancy

29 RGS/September 1985

KBS Architectural Principles

A Clear, Expressive Domain Model is Central
 • Objects
 • Abstract Relations

Partition Knowledge Wherever Possible
 • Domain-Independent Knowledge
 • Domain-Specific Knowledge
 • Task-Specific Knowledge

Avoid Assumptions about Context of Use

Represent Control Explicitly
 • Strategy Knowledge
 • Problem-Solving State

Orchestrate Multiple Representations
 • Objects, Rules, Procedures
 • Invocation via Message

Consider User Interaction as an Integrated

Component

30 RGS/September 1985

Encoding Abstract Relations

• Generalization
 Specialization
 Subsumption

• Class Membership

• SuperPart Task Abstraction
 Part Subtask Expansion
 Port …

• Cause
 Effect
 Manifestation

• Suggests

• Precondition
 Postcondition

• Ordering …

• Attribute (obligatory, optional, …)
 (necessary, sufficient, …)

31 RGS/September 1985

Control Rule

Create tasks to determine any unknown attributes of the
focus of the current task (one task per attribute).

If

There exists an Attribute (:att) of the Focus (:f)
of the Current Task

such that the :att of :f is unknown, and
such that there are Detectors (:dtr) of :att of :f

Then
Create a Sibling Task (:st) of the Current Task

To Detect :att of :f using :dtr
Append [Rules ReElaborate Apply] to the

SuccessfullnvocationProcessors of :sbt

32 RGS/September 1985

Abstraction Example
(Szolovits & Clancey, 1985)

If Mary has a fever,
then Mary has an infection.

Mary is a patient

If the patient has a fever,
then the patient has an infection.

Fever is a symptom. Infection is a disease.
Fever is a symptom of infection.

If the patient has a symptom of a disease,
then the patient has the disease.

A symptom is a feature. A disease is a class.

If there is evidence for a feature of a class,
then there is evidence for the class.

33 RGS/September 1985

Interpretation Rule

Recognize the existence of a CrevasseSplay.

If

There exists a RockUnit (:ru) in the Current Context
such that the DepositionalEnvironment (:de) of :ru

is a descendant of CrevasseFan, and
There exists an element of the Patterns (:bp) of :ru

such that :bp is an instance of BluePattern, and
such that at least 0.8 of :bp is within :ru, and

There does not exist a co-constituent of :ru (:ru2)
such that the DepositionalEnvironment of :ru2

is a descendant of ChannelLag, and
such that :ru2 is below :ru

Then

Alter :de of :ru to be CrevasseSplay

34 RGS/September 1985

Interpretation Rule

Recognize the existence of a CrevasseSplay.

If

There exists a RockUnit (:ru) in the Current Context
such that the DepositionalEnvironment (:de) of :ru

is a descendant of CrevasseFan, and
There exists an element of the SedimentaryFeatures

(:cb) of :ru
such that :sf is an instance of CurrentBedding, and
such that at least 0.8 of :cb is within :ru, and

There does not exist a co-constituent of :ru (:ru2)
such that the DepositionalEnvironment of :ru2

is a descendant of ChannelLag, and
such that :ru2 is below :ru

Then

Alter :de of :ru to be CrevasseSplay

35 RGS/September 1985

36 RGS/September 1985

Examples:

IF the hypothesis being focused upon has
a child that has not been pursued

THEN pursue that child

IF there is a datum that can be requested

that is a characterizing feature of the
recent finding that is currently being
considered

THEN find out about the datum

IF the desired finding is a subtype of a

class of findings, and
the class of findings is not present
in this case

THEN conclude that the desired finding
is not present

37 RGS/September 1985

Control Rule

Create tasks to elaborate the attribute values of the focus
of the current task (one task per attribute value).

If

There exists a local Attribute (:att) of the Focus (:f)
of the Current Task

such that :att is known and elaborable
Then

Create an Offspring Task (:ost) of the Current Task
To Elaborate :att using [Rules ReElaborate Apply]

Append [Rules DeActivate Apply] to the
SuccessfullnvocationProcessors of :ost

38 RGS/September 1985

Control Rule

Create a task to refine the focus of the current task.

If

There does not exist a Sibling Task (:tsk) of
the Current Task

such that the Task of :tsk = Refine, and
There exists a Focus (:f) of the Current Task

such that the Refiners (:r) of :f are known
Then

Create a Sibling Task (:sbt) of the Current Task
To Refine :f using :r

Append [Rules ReEstablishRefine Apply] to the
SuccessfullnvocationProcessors of :sbt

39 RGS/September 1985

Interpretation Rule

Establish the existence of any Energylndications.

If

There exists a RockUnit (:ru) in the Current Context
such that the Energyindications of :ru are unknown,
such that the Well (:wI) of :ru is known,
such that the LogData (:Id) of :wI is known,
such that Message to

[Detectors, Energylndicators, Detect] (:en)
is successful

Then
Assign Energylndications of :ru to be :en

40 RGS/September 1985

Advantages:

• Transparency

• Explainability

• Maintainability and Extensibility

• Simplified Addition of New Facts and Relations

• Increased Robustness

• Storage

• Reusability of KBs in Related Domains

• Lower Cost of Construction

• Freedom to Select Optimal Representation For
 Special Cases

41 RGS/September 1985

