REPRESENTATION IN KNOWLEDGE-BASED SYSTEMS
Reid G. Smith

Schlumberger-Doll Research
Old Quarry Road
Ridgefield, CT 06877-4108
USA

Al Europa, Wiesbaden, Germany, September, 1985.

EXTENDED ABSTRACT

First generation knowledge-based systems (KBSs) typically used a single representational
paradigm—such as production rules—to meet all requirements. More ambitious goals have led
largely to the abandonment of this simple model. These goals include: (i) construction of
systems that encapsulate more aspects of human expert behavior; and (ii) reduction in the
cost of system construction and maintenance; and (iii) improvement of time/space
performance. As a result, current systems tend to use multiple representations—such as
objects, rules, constraints, tasks, and procedures—each tuned to handle specialized classes of
information and situations. A number of designers have found it advantageous to integrate the
different paradigms via an object-oriented foundation, or substrate.

To understand the utility of an object-oriented substrate, we consider the process of KBS
development. In current practice the transfer of expertise from a domain specialist to a
knowledge-based system involves a computer scientist intermediary—or knowledge engineer.
The specialist and the engineer discuss the domain in a series of interactions. During each
interaction, the engineer gathers some understanding of a portion of the specialist's
knowledge, encodes it in the evolving system, discusses the encoding and the results of its
application with the specialist, and refines the encoded knowledge. The process is a
painstaking one—expensive and tedious. As a result, one of the foremost problems that has
been identified for KBSs is the knowledge acquisition bottleneck.

For our purposes, we can observe that two sorts of software tools and methods are crucial to a
smooth KBS development scenario: (i) those that simplify the process of incremental system
refinement; and (ii) those that allow the domain specialist to interact directly to some extent
with the evolving system in order to: examine the knowledge base for gaps, weaknesses, and
misunderstandings; and expand, refine, and correct the encoded knowledge. Such tools have
the potential to increase the bandwidth of the interaction between domain specialist,
knowledge engineer, and system by allowing attention to be focused on the required domain
knowledge and problem-solving methodology—without being bogged down in programming
mechanics.

Object-oriented programming provides powerful assistance for the KBS developer. It has been
found to be an effective aid to the exploratory programming style that characterizes the
incremental refinement process of KBS development. One of the primary problems facing the
KBS developer is management of complexity in a dynamic environment. This is increasingly
true as KBSs are scaled-up to meet the demands of real-world problems. A powerful aid to
managing complexity is a clear conceptual model of the evolving system—a kind of
computational skeleton. In constructing a clear model, it is helpful to organize computation
around programming constructs whose internal structure and interrelationships explicitly reflect

1

http://www.rgsmithassociates.com/About.htm

those of constructs in the physical world in which the resultant systems are to operate. It is in
constructing such models that the object-oriented style excels. Furthermore, the object-
oriented style encourages modular code with well-defined interfaces through its use of
messages as an invocation form. Inheritance of properties simplifies code-sharing. This leads
to more space-efficient code and to ease of maintenance and alteration. In addition—and of
primary importance—-the use of messages allows many traditional KBS representational
paradigms (e.g., rules, constraints) to be encoded as objects and invoked (via messages) in a
uniform manner.

A clear model of the evolving system is as important to the domain specialist as it is to the KBS
developer. Objects appear to be a natural and understandable knowledge organizing
mechanism to humans not normally involved in computation. The concept of a prototype for
encapsulating information—both data and procedures—is well-understood and used by humans,
as are the concepts of classes and instances, taxonomies—and taxonomic inheritance of
properties (along with a number of other forms of inheritance). In addition, a number of
powerful systems have been developed for easy graphical examination and extension of
knowledge bases. A keynote to these systems is that the domain specialist is able to express
himself and interact in the natural terms and notation of his domain.

In the first part of the presentation, we review our experience with an example of an integrated
knowledge-based system development environment based on an object-oriented substrate
and demonstrate the advantages of the approach.

We have been discussing the utility of an object-oriented substrate for reducing the knowledge
acquisition bottleneck by increasing the bandwidth of interactions between domain specialist,
knowledge engineer, and knowledge-based system. There are two intended effects: (i) a
reduction in the time/cost required for KBS construction and maintenance; and (ii) an increase
in the robustness and power of the resultant systems. There is a third potential payoff that
might accrue from the use of objects as a representational substrate. We are searching for a
representational substrate that will allow knowledge to be encoded in such a way as to permit
knowledge bases developed in the context of one application to be used almost as is in related
applications in the same domain. Indeed some aspects of the encoded knowledge bases
should be usable across domains. In the short term, this would enable amortization of the cost
of knowledge acquisition. In the longer term, it could lead to knowledge-sharing between
specialists—a kind of computational publication. Unlike the knowledge involved in traditional
journal publication, however, this knowledge will be computationally described, directly usable
knowledge. Such a development could have enormous implications and could vastly increase
the leverage of an individual domain specialist. It could greatly shorten the time delays
currently involved in making a new development the widely used standard practice.

In order to obtain the desired effect, we believe that architectural principles of knowledge-
based system design must emerge. The current practice in the field will not lead to the
advantages we seek regarding robustness, power, and cost of construction and maintenance.
Below, we list some candidate principles.

* Aclear, expressive domain model is central.

* ltis desirable to encode knowledge through abstract relations that are usable across
domains (e.g., part/whole, generalization/specialization, task/subtask).

* Knowledge should be partitioned wherever possible (e.g., into domain-independent,
domain-specific, and task-specific packets).

* Assumptions about the context in which knowledge will be used should be minimized.

2

» Control should be explicitly represented (i.e., strategy knowledge, problem-solving state,
and problem-solving history).

* Specialized representations are essential (e.g., objects, rules, constraints, tasks,
procedures) for high performance. They must be integrated.

* User interaction should be considered as an integrated component.

In the second part of the presentation, we discuss these principles and the utility of object-
oriented programming in following them.

Representation
N
Knowledge-Based Systems

Reid G. Smith

Schlumberger-Doll Research
Old Quarry Road
Ridgefield CT, 06877-4108
USA

RGS/September 1985

Themes

State of the art knowledge-based systems
orchestrate multiple representational paradigms

An object-oriented substrate offers useful tools
for integration of the different paradigms

Architectural principles of knowledge-based
systems are emerging

An object-oriented substrate helps developers
follow the principles

RGS/September 1985

Impacting
the
Knowledge Acquisition Bottleneck

D KNOWLEDGE ENGINEERING TOOLS

» Assist the Knowledge Engineer and Domain
Specialist to Focus on the Domain Knowledge
and Problem-Solving Methodology

o Simplify the Incremental Refinement Process

« Allow Direct Interaction by the Domain
Specialist

... Expression and Interaction in Domain Terms

« Amortize KB Construction Cost via Knowledge
Sharing

... Architectural Principles

MACHINE LEARNING TECHNIQUES

 Learning Apprentice Systems

RGS/September 1985

Structured Object Representation

Modularity: Encapsulation of Properties and
Behavior

Specialized Procedure Invocation via Messages

Abstraction: Taxonomic Hierarchies...
* Inheritance of Properties

Event-Driven Procedure Invocation
... Useful for Managing Complexity

Prototypes: a Natural and Understandable
Knowledge Organizing Mechanism

Computational Skeleton: Structure for the
Reasoning System

Messages: a Universal Invocation Mechanism

RGS/September 1985

Graph of PROGENY for StructuralFeature in GEOLOGY

Disconformity
Unconiormity< Diastem
AngularUnconformity
PostDepositionalUplift
Syncline
Fold=<__ snticine
Strike/SlipFault
LateFault
NormalFauIl<< NormalFault1
- ReverseFault
D'p/s"pFau"<LagFa uit

DistortionRegion

StructuralFeature

LateFault1
Fault

ThrustFault OverthrustFault

BrecciaRegion

5 RGS/September 1985

Graph of PROGENY for Lithology in GEOLOGY

Lithologyi |

‘l\ Y
L
Y

ill‘ ".ll.
II 'ul

|.“ "

Melamorphlcnock

IgneousRock~

Sed:mentaryﬂock{ .

+Sylvite
/ , SiliciclasticRock
I,.x;;ff.---‘_“j . Salt
/" ~MixedLithology
—MiscellaneousRock
—Halite
Gypsum
Euaporlte
,*CarbonateRock
* Anhydrite

— IntrusiveRock
— ExtrusiveRock

RGS/September 1985

Graph of PARTS for DeltaicPlain in GEOLOGY

UpperDeltaicPlain Swamp
OverBankLevee
Lake

DeltaicPlain RiverChannel

LowerDeltaicPlain

RGS/September 1985

Bacterium:

MEDICAL TAXONOMY

_—~E.Coli

L G-Rod<" EnteroBacteriacum-— Klebsiella
~Proteus

- Hemophilus
G + Rod——Diptheroids

e
e

- . __—@Gonococcus
Neisserium-=-_ :
~Meningococcus
_—Staphylococcus

"G+ Coceus=="_
—Streptococcus

", ~G-Coccus

RGS/September 1985

Hearsay 11

LEVELS

KNOWLEDGE SOURCES

DATABASE
INTERFACE

PHRASE

WORD SEQUENCE

WORD

SYLLABLE

SEGMENT

PARAMETER

RGS/September 1985

10

LOWER DELTAIC PLAIN
Estuarine Lagoon

Mangrove Swamp

North
o

UPPER DELTAIC PLAIN

Levee Backswamp

Estuarine
Channel

River Channel

Point Bar

o ;’

el Fill

Crevasse Splay

Channel Lag

Tidal Channel Fill
Tidal Currents Earlier Deposits

RGS/September 1985

11

Strobe Datatypes

-Object

Datum-Print:

Value:Sys/ObjectPrint
Datatype: Lisp

Datum-Edit:

Value: Sys/ObjectEdit
Datatype: Lisp

"Log
Well:

Value:
Datatype: Well

Index:
Value:

Datatype: Index

Display:
Value: DisplayLog
Datatype: Lisp

Is A
-Well
Company:
Value:

Datatype: Text

Logs:
Value:
Datatype: Log

Is A
-Gr-3
Well:
Value: Well-1
Datatype: Well
Index:

Value: Depth-10
Datatype: Depth

(MESSAGE 'Gr-3 'Well 'Edit)

received by

Sys/ObjectEdit

RGS/September 1985

12

Well

C om p an y " g
Value:

Logs:
Value:
Datatype: Log

rSlots

Datatype: Text -«
““Facetss

Value: Japex
Datatype: Text

Logs:
Value: Gr-3, Sp-2
Datatype: Log

Strobe

w= Objects

'Lég

{Well:

Value:
Datatype: Well

Index:
Value:

Datatype: Index
Display:
Value: DisplayLog

Datatype: Lisp

K.

Is A

4
Is A A
-Well-1 -Gr-3
Company: Well:

Value: Well-1
Datatype: Well

Index:
Value: Depth-10

> Datatype: Depth

RGS/September 1985

13

Strobe Summary

Knowledge Bases, Objects, Slots, Facets

Tangled Taxonomic Hierarchies

e Class/Instance Distinction
e Flexible Slot/Facet Inheritance with Caching

Procedural Attachment: Invocation via Message

e Datatype Forwarding

Event-Driven Procedure Invocation

e Object/Slot Creation/Deletion
e Slot Value Access/Alteration [before/after]

Groups: Arbitrary Object Collections
Multiple Resident Knowledge Bases
Multiple Machine/Language Operation
Object/Slot Synonyms

Description Object Instantiation

RGS/September 1985

Individual Rule Object

Object: NormalFault9
Generalizations: Rule
If: (Conditionl Condition2)
Then: (Actionl Action2)
Conditionl: (ThereExists z NormalFaultZone)
Condition2: (ThereExists p RedPattern
($< p.Length RedLength)
($Above p 2)
($Perpendicular p.Azimuth z.Strike))
Actionl: ($Specialize z 'LateFaultZone)
Action2: ($Assign 'DirectionToDownthrownBlock z
p.Azimuth)
Translation:
If
1. there exists an instance of the class
NormalFaultZone (z), and
2. there exists an instance of the class RedPattern (p)
such that the Length of p < RedLength, and
such that p is above z, and
such that the Azimuth of p is perpendicular to the
Strike of z
Then
1. specialize z to be a LateFaultZone
2. the DirectionToDownthrownBlock of z

<« the Azimuth of p

14 RGS/September 1985

Individual Rule Object

Object: Tidall
Generalizations: Rule

Translation:
If
1. there exists a Transition/InnerShelfZone (z)
such that the influence of z is Wave/Tide, and
2. there exists a set of BluePatterns (p)
such that each new element of p is within z, and
such that each new element of p is below the last
element of p, and
such that the Azimuth of each new element of p is
opposite to the Azimuth the last element of p, and
such that the size of thesetp>1
Then
1. create a TidalFlatZone (tz)

2. the Top of tz < the Depth of the first element of p
3. the Bottom of tz «— the Depth of the last element of p
4. the Axis of tz «<— the Azimuth of the last element of p

15 RGS/September 1985

Rule Class Object

Object: Rule
Generalizations: Object

16

If:

Then:

Ruleset:

Translation:

Apply: ApplyRule
Match: MatchRule
MatchAll: MatchRuleAll
Execute: ExecuteRule
Translate: TranslateRule

RGS/September 1985

Individual Ruleset Object

Object: DeepMarineRuleset

Generalizations: Ruleset
NormalRules: Marine-20 Marine-21 Marine-22
ControlStrategy: ReStartAfterFiring

17 RGS/September 1985

Ruleset Class Object

Object: Ruleset
Generalizations: Object
NormalRules:
FireOnceRules:
FireAlwaysRules:
ControlStrategy:
Termination Condition:
KnowledgeBase:
Apply: ApplyRuleset
ApplylnProcess: ApplyRulesetinProcess

18

RGS/September 1985

19

Constrained Object

Object: WellLocation
Type: Class
Generalizations: Object

Well:

TOWN: {Township}
STAT: {State Province}
NATI: {Nation Country}

CONT: {Continent}
Value:
Datatype: Expr

Candidates: (Europe North-America South-America

Asia Africa Australia)
Constraints: (MembershipConstraint)

RGS/September 1985

Single Slot Constraint Object

Object: MembershipConstraint
Generalizations: SingleSlotConstraint

If {Condition}: (Conditionl)

Then {Correction}: (Actionl)

Conditionl: (NOT (MEMBER Value Candidates))
Actionl: (ERROR Value "is not one of:" Candidates)

SetOrElementConstraint: Element

20 RGS/September 1985

Datatype Object for Integrity

Object: Datatype
Generalizations: Root
Datum-Get: StandardGetHandler

Datum-Put: IntegrityPutHandler

Datum-Add: IntegrityAddHandler
Datum-Remove: IntegrityRemoveHandler

21

RGS/September 1985

22

Impulse: An Extensible and Interactive
Knowledge Base Editor

e Reactive Environment
e Customized Presentation and Interaction

e Flexible Display of Knowledge Base
Structure

RGS/September 1985

23

Graph of PROGENY for GeologicAge in GEOLOGY

TotalHistory
Triassic
Tertiary
Silurian
Quaternary
Permian
Pennsylvanian

Period Ordovician
Mississipian
Jurassic
Devonian
Cretaceous
Carboniferous

. Cambrian
GeologicAge Precambrian
Era éPaleozo}c
Mesozoic
Cenozoic
Pliocene
Pleistocene
Paleocene
Epoch Oligocene
Miocene
Holocene
Eocene
Phanerozoic
Eon<0ryptozoic
Azoic

RGS/September 1985

Phanerozoic
TotalHistory

Cryptozoic
Azoic

Graph of PARTS for TotalHistory in GEOLOGY

Quaternary<H°'°cene

Cenozoic
Tertiary

Cretaceous
Jurassic
Triassic

Mesozoic

Silurian
Ordovician

Cambrian
Precambrian

Permian
Carboniferous<:M'ss'ss'p'an
Paleozoic Devonian

Pleistocene
Pliocene
Miocene
Oligocene
Eocene
Paleocene

Pennsylvanian

24

RGS/September 1985

Rule Commands
Exit
order LHE
Drder RHS
FRenarne This Rule
Translate Rule
Delete This Rule

SE Commands
Edit Facets
Inzpect Value
FMes3age

SetValue
Cielete this Slot
8 Clause Commands

Mew LHS

"lt.'v\ RH—J

e Clause
Dizlete Zlause

3

o1y
iz

e

Synonyrns:
Groups:
Type.INDIvIDU L.

IF::

Condition2:

THEN::

Action1: ($3PECIAL

Rule Slots:
RULESET(*):
SOURCE(1):
AUTHOR(*):
BREAK{1):
TRANSLATION:
IF:
(1) There exists
PEOJECTION
There exists
(12)

zuch that

zuch that

and

zuch that

the

Specialize

RuleEditor: NormalFault9in KB TESTRULES
Object: NormalFaultg

Edited: 19-Jan-35 16:35:87

Condition1: (THERE-
{ THERE-

Acﬁunz.($ﬂ5 ;IGN DIRECTION-TO-DOWNTHROWN-BLOCK of % to

STRIKE of

'Y to be a LATE-FAULT-PROJECTION
the DIRECTIOM-TO-DOWNTHROWM-BLOCK of
AZIMUTH of 2

By: REID

ERXISTS
EXISTS

iy MNORMAL-FAULT-PROJECTION)
12 RED-PATTERN
{$< (THE LENGTH :2)
RedLength)
{$ABOVE :2Z :¥ Overlap Gap)
{ $PERPENDICULAR (THE AZIMUTH
{THE STRIKE
Tolerance))

:1Z)
i)

W
A

[ZE to be a LATE-FAULT-PROJECTION)

be (THE AZIMUTH :2))

an instance of the class WNORMAL-F&ULT-
:1)
an instance of the class RED-PATTEEN

the LENGTH of :2 < RedLerngyth, and
2 is above :¥ within [Overlap, Gap],

the AZIMUTH of :Z2 1is perpendicular to
¥ within Tolerance

Yo« the
s

25

RGS/September 1985

i] RGHRBERBRR GRS {
SHAD!NG DIAGDNAL -) BHEAK s BREAK VEI’ITIGAL -) BREAK
UNSHADED => BREAK = NIL

FabPartsRoutingRule-4 |}
FabPart sRoutingRulezet-a62! FabPartsRouti :
Iteration 12 : "
EDIT-RULESET ||Executing Rule FabPartsRoutingRule-3
HISTORY Variable Bindings: ((:step
—— IMaterialTypedRouting: DryHone) (:part . H313132-1)
{‘poszibledteps Ur}Hone 3523 (:independentStep
RoutingStep-8029) {:materialRouting
bta1nla¢satce1ﬁout1ng))
RoutingStep-BO35 created as a RoutingStep
PartBeingRouted of Routing3tep-86035 is assigned
H3139132-1
Operation of Routingdtep-8@35 13 assigned
{0ryHone-352)
Inserted New Routing Step: Routing3tep-8035 after
RoutingStep-0029
FabPartsRoutingRule~- 1 Ruleset: FabPartsRoutingRuleset-8622
FabPartsﬂoutingnule-‘t Iteration 13
FabPartsRoutingRule=1 Executing Rule FabPartsRoutingRule-3
FabPartsBoutmgHule-1 Variable Blnding;: {({:part . H319132-1)
1 (imaterialRouting))
DependentRoutingCompleted of H319432-1 s assigned T
FabPartsRoutingRule - 1 Ruleset: FabPartzRoutingRuleset-9022
: e Iteration 19
E::g::i:gﬁ:g:ggﬁ:_g Exec_utin_q F!ulq FabPartsRoutingRule-5
FabPartsRoutingRule=3 Variable Bindings: ((:part . H319132-1))
. FoutingCompleted of H319132-1 13 assigned T
FabPartsRoutingRule=3 Ruleset: FabhPartsRoutingRuleset-B622
FabPartsHout!ngRuie-a Iteration 15
FabPartsRoutingRule-3| fgornpleted Ruleset: FabPartsRoutingRuleset-9822
- [FabPartsRoutingRule-4 FabPartsRoutingkulesetis blocked
FabPartsRoutingRule-5

rewitep . Routingitep-0@z§)

Critep . Materi1alTypesPouting: Tigweld)
ipart . H3I19132-1)
cpozsiblelteps TigWeld-351)
Cmaterialkouting . StainlesssteelRouting))

-:IL&tnTE cnewitep Routingdtep-AR235 Routingdtep)
In ulnu Fuur n.g._r,-.-p LJB?S F‘arch1r|-3R-JLatec} Halqu_ 1)

R A A 0 A 0 A A 0 A A 1 0 1 A 1 P B 8 Y A A 0 A8 i A
e

26 RGS/September 1985

MODULAR INCREMENTS TO STROBE

e Impulse
- Strobe-based KB editor
- Customizable

Rule Interpreter
- Rule Debugging Package
- Rule Editor (Impulse-based)

e Constraint Package
- Semantic Integrity Management within and
among objects

Object File Management (KBMS)
- Indexed non-resident object files

Declarative Task Representation
- Control and data flow among modules

- User-interface information

27 RGS/September 1985

28

SUBSTRATES

Application Code & Knowledge
2

Gl

N\

Tasks

Z

MININ

7
;
Constraints

G

Rules

Objects / Programming Languages

Network
NI1 NI2 Nin
C1 C2 ee e e e Cn

RGS/September 1985

29

KBS Architectural Principles
(Davis, 1982)

Separate the Inference Engine and Knowledge Base

e What Is True vs How to Use It

Use as Uniform a Representation as Possible

» Specialization Is Often Worth the Cost of Translation
Keep the Inference Engine Simple

Exploit Redundancy

RGS/September 1985

KBS Architectural Principles

A Clear, Expressive Domain Model is Central
 Objects
» Abstract Relations

Partition Knowledge Wherever Possible
« Domain-Independent Knowledge
« Domain-Specific Knowledge
 Task-Specific Knowledge

Avoid Assumptions about Context of Use

Represent Control Explicitly
o Strategy Knowledge
 Problem-Solving State

Orchestrate Multiple Representations
 Objects, Rules, Procedures
* Invocation via Message

Consider User Interaction as an Integrated
Component

30 RGS/September 1985

31

Encoding Abstract Relations

Generalization
Specialization
Subsumption

Class Membership

SuperPart Task
Part Subtask
Port ...

Cause
Effect
Manifestation
Suggests

Precondition
Postcondition

Ordering ...

Abstraction
Expansion

Attribute (obligatory, optional, ...)
(necessary, sufficient, ...)

RGS/September 1985

Control Rule

Create tasks to determine any unknown attributes of the
focus of the current task (one task per attribute).

If
There exists an Attribute (:att) of the Focus (:f)
of the Current Task
such that the :att of :f is unknown, and
such that there are Detectors (:.dtr) of :att of :f
Then
Create a Sibling Task (:st) of the Current Task
To Detect :att of :f using :dtr
Append [Rules ReElaborate Apply] to the
SuccessfullnvocationProcessors of :sbt

32 RGS/September 1985

33

Abstraction Example
(Szolovits & Clancey, 1985)

If Mary has a fever,
then Mary has an infection.

Mary is a patient

If the patient has a fever,
then the patient has an infection.

Fever is a symptom. Infection is a disease.
Fever is a symptom of infection.

If the patient has a symptom of a disease,
then the patient has the disease.

A symptom is a feature. A disease is a class.

If there is evidence for a feature of a class,
then there is evidence for the class.

RGS/September 1985

Interpretation Rule

Recognize the existence of a CrevasseSplay.

If
There exists a RockUnit (:ru) in the Current Context
such that the DepositionalEnvironment (:de) of :ru
Is a descendant of CrevasseFan, and
There exists an element of the Patterns (:bp) of :ru
such that :bp is an instance of BluePattern, and
such that at least 0.8 of :bp is within :ru, and
There does not exist a co-constituent of :ru (:ru2)
such that the DepositionalEnvironment of :ru2
Is a descendant of ChannellLag, and
such that :ru2 is below :ru

Then
Alter :de of :ru to be CrevasseSplay

RGS/September 1985

Interpretation Rule

Recognize the existence of a CrevasseSplay.

If
There exists a RockUnit (:ru) in the Current Context
such that the DepositionalEnvironment (:de) of :ru
IS a descendant of CrevasseFan, and
There exists an element of the SedimentaryFeatures
(:cb) of :ru
such that :sf is an instance of CurrentBedding, and
such that at least 0.8 of :cb is within :ru, and
There does not exist a co-constituent of :ru (:ru2)
such that the DepositionalEnvironment of :ru2
Is a descendant of ChannellLag, and
such that :ru2 is below :ru

Then
Alter :de of :ru to be CrevasseSplay

RGS/September 1985

36

NEOMYCIN DIAGNOSTIC STRATEGY

Consull

MakeDi_égnosis PrintResults

Identify_ﬁroblem Colteéiiﬁformation

ForwardReason GenerateQuestions

ClarifyFinding |
ProcessFinding/Hypothesis

EstablisthlehesisSpace ProcessHardData

Group&Di_fwfﬁé;entiale Explore'&Fleﬁne AskGen‘ér_ﬁlouestions
PursueHypothesis
TestHypai_hesis RefineHypothesis

RelineCnmpléxHypolhesis

RGS/September 1985

37

Examples:

IF the hypothesis being focused upon has
a child that has not been pursued

THEN pursue that child

IF there is a datum that can be requested
that is a characterizing feature of the

recent finding that is currently being
considered

THEN find out about the datum

IF the desired finding is a subtype of a
class of findings, and

the class of findings is not present
In this case

THEN conclude that the desired finding
IS not present

RGS/September 1985

Control Rule

Create tasks to elaborate the attribute values of the focus
of the current task (one task per attribute value).

If
There exists a local Attribute (:att) of the Focus (:f)
of the Current Task
such that :att is known and elaborable
Then
Create an Offspring Task (:ost) of the Current Task
To Elaborate :att using [Rules ReElaborate Apply]
Append [Rules DeActivate Apply] to the
SuccessfullnvocationProcessors of :ost

38 RGS/September 1985

39

Control Rule

Create a task to refine the focus of the current task.

If
There does not exist a Sibling Task (:tsk) of
the Current Task
such that the Task of :tsk = Refine, and
There exists a Focus (:f) of the Current Task
such that the Refiners (:r) of :f are known
Then
Create a Sibling Task (:sbt) of the Current Task
To Refine :f using :r
Append [Rules ReEstablishRefine Apply] to the
SuccessfullnvocationProcessors of :sbt

RGS/September 1985

Interpretation Rule

Establish the existence of any Energylndications.

If
There exists a RockUnit (:ru) in the Current Context
such that the Energyindications of :ru are unknown,
such that the Well (:wl) of :ru is known,
such that the LogData (:ld) of :wl is known,
such that Message to
[Detectors, Energylndicators, Detect] (:en)

IS successful
Then
Assign Energylindications oOf :ru to be :en

RGS/September 1985

Advantages:

e Transparency
e Explainability
e Maintainability and Extensibility

e Simplified Addition of New Facts and Relations

e Increased Robustness

e Storage
e Reusability of KBs in Related Domains

e Lower Cost of Construction

e Freedom to Select Optimal Representation For
Special Cases

41 RGS/September 1985

